Dow-Mu Koh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1271037/publications.pdf Version: 2024-02-01

Пош-Микон

#	Article	IF	CITATIONS
1	Multiparametric bone MRI can improve CT-guided bone biopsy target selection in cancer patients and increase diagnostic yield and feasibility of next-generation tumour sequencing. European Radiology, 2022, , 1.	4.5	8
2	Starting CT-guided robotic interventional oncology at a UK centre. British Journal of Radiology, 2022, 95, 20220217.	2.2	5
3	A review on the added value of whole-body MRI in metastatic lobular breast cancer. European Radiology, 2022, 32, 6514-6525.	4.5	8
4	Transgender health and medicine – Are radiological devices prepared?. European Journal of Radiology, 2022, 151, 110320.	2.6	5
5	Considerations for artificial intelligence clinical impact in oncologic imaging: an AI4HI position paper. Insights Into Imaging, 2022, 13, 89.	3.4	9
6	Addressing intimate partner violence during the COVID-19 pandemic and beyond: how radiologists can make a difference. European Radiology, 2021, 31, 2126-2131.	4.5	14
7	MRI texture feature repeatability and image acquisition factor robustness, a phantom study and in silico study. European Radiology Experimental, 2021, 5, 2.	3.4	14
8	Consensus report from the 9th International Forum for Liver Magnetic Resonance Imaging: applications of gadoxetic acid-enhanced imaging. European Radiology, 2021, 31, 5615-5628.	4.5	14
9	Prospective comparison of whole body MRI and FDG PET/CT for detection of multiple myeloma and correlation with markers of disease burden: Results of the iTIMM trial Journal of Clinical Oncology, 2021, 39, 8012-8012.	1.6	2
10	Oncologically Relevant Findings Reporting and Data System (ONCO-RADS): Guidelines for the Acquisition, Interpretation, and Reporting of Whole-Body MRI for Cancer Screening. Radiology, 2021, 299, 494-507.	7.3	26
11	Rapid 4D-MRI reconstruction using a deep radial convolutional neural network: Dracula. Radiotherapy and Oncology, 2021, 159, 209-217.	0.6	18
12	Whole-body diffusion-weighted MRI in lymphoma—comparison of global apparent diffusion coefficient histogram parameters for differentiation of diseased nodes of lymphoma patients from normal lymph nodes of healthy individuals. Quantitative Imaging in Medicine and Surgery, 2021, 11, 3549-3561.	2.0	3
13	Diagnostic Accuracy of FEC-PET/CT, FDG-PET/CT, and Diffusion-Weighted MRI in Detection of Nodal Metastases in Surgically Treated Endometrial and Cervical Carcinoma. Clinical Cancer Research, 2021, 27, 6457-6466.	7.0	11
14	Prospective Evaluation of Whole-Body MRI versus FDG PET/CT for Lesion Detection in Participants with Myeloma. Radiology Imaging Cancer, 2021, 3, e210048.	1.6	22
15	Accelerating Whole-Body Diffusion-weighted MRI with Deep Learning–based Denoising Image Filters. Radiology: Artificial Intelligence, 2021, 3, e200279.	5.8	8
16	Radiomics in Oncology: A Practical Guide. Radiographics, 2021, 41, 1717-1732.	3.3	139
17	Early response to chemotherapy in malignant pleural mesothelioma assessed using diffusion-weighted MRI: Initial observations. JTO Clinical and Research Reports, 2021, 2, 100253.	1.1	0
18	DCE-MRI is more sensitive than IVIM-DWI for assessing anti-angiogenic treatment-induced changes in colorectal liver metastases. Cancer Imaging, 2021, 21, 67.	2.8	4

#	Article	IF	CITATIONS
19	Consensus report from the 8th International Forum for Liver Magnetic Resonance Imaging. European Radiology, 2020, 30, 370-382.	4.5	55
20	Interobserver agreement of whole-body magnetic resonance imaging is superior to whole-body computed tomography for assessing disease burden in patients with multiple myeloma. European Radiology, 2020, 30, 320-327.	4.5	18
21	A clinicalâ€radiomic model for improved prognostication of surgical candidates with colorectal liver metastases. Journal of Surgical Oncology, 2020, 121, 357-364.	1.7	24
22	Diagnostic Accuracy and Safety of Coaxial System in Oncology Patients Treated in a Specialist Cancer Center With Prospective Validation Within Clinical Trial Data. Frontiers in Oncology, 2020, 10, 1634.	2.8	2
23	Comparison of Whole-Body MRI, CT, and Bone Scintigraphy for Response Evaluation of Cancer Therapeutics in Metastatic Breast Cancer to Bone. Radiology, 2020, 297, 622-629.	7.3	24
24	Comparison of a coaxial versus non-coaxial liver biopsy technique in an oncological setting: diagnostic yield, complications and seeding risk. European Radiology, 2020, 30, 6702-6708.	4.5	14
25	Using Deep Learning for MRI to Identify Responders to Chemoradiotherapy in Rectal Cancer. Radiology, 2020, 296, 65-66.	7.3	13
26	Whole-body magnetic resonance imaging (WB-MRI) for cancer screening in asymptomatic subjects of the general population: review and recommendations. Cancer Imaging, 2020, 20, 34.	2.8	27
27	Psychosocial effects of whole-body MRI screening in adult high-risk pathogenic <i>TP53</i> mutation carriers: a case-controlled study (SIGNIFY). Journal of Medical Genetics, 2020, 57, 226-236.	3.2	15
28	Noninvasive MRI Native T1 Mapping Detects Response to <i>MYCN</i> -targeted Therapies in the Th- <i>MYCN</i> Model of Neuroblastoma. Cancer Research, 2020, 80, 3424-3435.	0.9	15
29	Intimate partner violence crisis in the COVID-19 pandemic: how can radiologists make a difference?. European Radiology, 2020, 30, 6933-6936.	4.5	40
30	New Advances in Magnetic Resonance Techniques in Abdomen and Pelvis. Magnetic Resonance Imaging Clinics of North America, 2020, 28, 433-445.	1.1	2
31	Would it be safe to have a dog in the MRI scanner before your own examination? A multicenter study to establish hygiene facts related to dogs and men. European Radiology, 2019, 29, 527-534.	4.5	2
32	Imaging Diagnosis and Follow-up of Advanced Prostate Cancer: Clinical Perspectives and State of the Art. Radiology, 2019, 292, 273-286.	7.3	46
33	Diagnostic accuracy of whole-body MRI versus standard imaging pathways for metastatic disease in newly diagnosed non-small-cell lung cancer: the prospective Streamline L trial. Lancet Respiratory Medicine,the, 2019, 7, 523-532.	10.7	50
34	Diagnostic accuracy of whole-body MRI versus standard imaging pathways for metastatic disease in newly diagnosed colorectal cancer: the prospective Streamline C trial. The Lancet Gastroenterology and Hepatology, 2019, 4, 529-537.	8.1	51
35	Serum albumin, total bilirubin, and patient age are independent confounders of hepatobiliary-phase gadoxetate parenchymal liver enhancement. European Radiology, 2019, 29, 5813-5822.	4.5	11
36	MRI Imaging of the Hemodynamic Vasculature of Neuroblastoma Predicts Response to Antiangiogenic Treatment. Cancer Research, 2019, 79, 2978-2991.	0.9	13

#	Article	IF	CITATIONS
37	Post-radiotherapy apparent diffusion coefficient (ADC) in children and young adults with high-grade gliomas and diffuse intrinsic pontine gliomas. Pediatric Hematology and Oncology, 2019, 36, 103-112.	0.8	7
38	Whole-body MRI compared with standard pathways for staging metastatic disease in lung and colorectal cancer: the Streamline diagnostic accuracy studies. Health Technology Assessment, 2019, 23, 1-270.	2.8	34
39	Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 2018, 359, 920-926.	12.6	1,199
40	Texture analysis of apparent diffusion coefficient maps for treatment response assessment in prostate cancer bone metastases—A pilot study. European Journal of Radiology, 2018, 101, 184-190.	2.6	23
41	UK quantitative WB-DWI technical workgroup: consensus meeting recommendations on optimisation, quality control, processing and analysis of quantitative whole-body diffusion-weighted imaging for cancer. British Journal of Radiology, 2018, 91, 20170577.	2.2	70
42	Multiparametric Magnetic Resonance Imaging of Prostate Cancer Bone Disease. Investigative Radiology, 2018, 53, 96-102.	6.2	36
43	MRI-based Assessment of 3D Intrafractional Motion of Head and Neck Cancer for RadiationÂTherapy. International Journal of Radiation Oncology Biology Physics, 2018, 100, 306-316.	0.8	28
44	Functional imaging and circulating biomarkers of response to regorafenib in treatment-refractory metastatic colorectal cancer patients in a prospective phase II study. Gut, 2018, 67, 1484-1492.	12.1	59
45	Quantitative Whole-Body Diffusion-Weighted MR Imaging. Magnetic Resonance Imaging Clinics of North America, 2018, 26, 479-494.	1.1	19
46	Repeatability of derived parameters from histograms following non-Gaussian diffusion modelling of diffusion-weighted imaging in a paediatric oncological cohort. European Radiology, 2017, 27, 345-353.	4.5	40
47	METastasis Reporting and Data System for Prostate Cancer: Practical Guidelines for Acquisition, Interpretation, and Reporting of Whole-body Magnetic Resonance Imaging-based Evaluations of Multiorgan Involvement in Advanced Prostate Cancer. European Urology, 2017, 71, 81-92.	1.9	230
48	Baseline results from the UK SIGNIFY study: a whole-body MRI screening study in TP53 mutation carriers and matched controls. Familial Cancer, 2017, 16, 433-440.	1.9	52
49	Extracranial Soft-Tissue Tumors: Repeatability of Apparent Diffusion Coefficient Estimates from Diffusion-weighted MR Imaging. Radiology, 2017, 284, 88-99.	7.3	45
50	Whole-Body MRI: Current Applications in Oncology. American Journal of Roentgenology, 2017, 209, W336-W349.	2.2	89
51	Non-Mono-Exponential Analysis of Diffusion-Weighted Imaging for Treatment Monitoring in Prostate Cancer Bone Metastases. Scientific Reports, 2017, 7, 5809.	3.3	9
52	Contrast-Enhanced CT Density Predicts Response to Sunitinib Therapy in Metastatic Renal Cell Carcinoma Patients. Translational Oncology, 2017, 10, 679-685.	3.7	9
53	Feasibility and applicability of diffusion-weighted and dynamic contrast-enhanced magnetic resonance imaging in routine assessments of children with high-grade gliomas. Pediatric Blood and Cancer, 2017, 64, 279-283.	1.5	2
54	Imaging biomarker roadmap for cancer studies. Nature Reviews Clinical Oncology, 2017, 14, 169-186.	27.6	792

#	Article	IF	CITATIONS
55	Diffusion-weighted Imaging as a Treatment Response Biomarker for Evaluating Bone Metastases in Prostate Cancer: A Pilot Study. Radiology, 2017, 283, 168-177.	7.3	81
56	Blood transfusion during radical chemo-radiotherapy does not reduce tumour hypoxia in squamous cell cancer of the head and neck. British Journal of Cancer, 2017, 116, 28-35.	6.4	20
57	Inter- and Intra-Observer Repeatability of Quantitative Whole-Body, Diffusion-Weighted Imaging (WBDWI) in Metastatic Bone Disease. PLoS ONE, 2016, 11, e0153840.	2.5	40
58	Pilot study on the detection of antiandrogen resistance using serial diffusionâ€weighted imaging of bone metastases in prostate cancer. Journal of Magnetic Resonance Imaging, 2016, 43, 1407-1416.	3.4	7
59	Evaluating the diagnostic sensitivity of computed diffusionâ€weighted MR imaging in the detection of breast cancer. Journal of Magnetic Resonance Imaging, 2016, 44, 130-137.	3.4	35
60	Modulation of renal oxygenation and perfusion in rat kidney monitored by quantitative diffusion and blood oxygen level dependent magnetic resonance imaging on a clinical 1.5T platform. BMC Nephrology, 2016, 17, 142.	1.8	6
61	Pseudoprogression in children, adolescents and young adults with non-brainstem high grade glioma and diffuse intrinsic pontine glioma. Journal of Neuro-Oncology, 2016, 129, 109-121.	2.9	30
62	T 2 -adjusted computed diffusion-weighted imaging: A novel method to enhance tumour visualisation. Computers in Biology and Medicine, 2016, 79, 92-98.	7.0	9
63	Response Assessment in Paediatric Phase I Trials According to RECIST Guidelines: Survival Outcomes, Patterns of Progression and Relevance of Changes in Tumour Measurements. Pediatric Blood and Cancer, 2016, 63, 1400-1406.	1.5	6
64	The Predictive Value of Early Assessment After 1 Cycle of Induction Chemotherapy with ¹⁸ F-FDG PET/CT and Diffusion-Weighted MRI for Response to Radical Chemoradiotherapy in Head and Neck Squamous Cell Carcinoma. Journal of Nuclear Medicine, 2016, 57, 1843-1850.	5.0	49
65	Diffusionâ€weighted imaging outside the brain: Consensus statement from an ISMRMâ€sponsored workshop. Journal of Magnetic Resonance Imaging, 2016, 44, 521-540.	3.4	146
66	Age dependence of spleen- and muscle-corrected hepatic signal enhancement on hepatobiliary phase gadoxetate MRI. European Radiology, 2016, 26, 1889-1894.	4.5	10
67	Reduction in respiratory motion artefacts on gadoxetate-enhanced MRI after training technicians to apply a simple and more patient-adapted breathing command. European Radiology, 2016, 26, 2714-2722.	4.5	21
68	Rapid development of image analysis research tools: Bridging the gap between researcher and clinician with pyOsiriX. Computers in Biology and Medicine, 2016, 69, 203-212.	7.0	34
69	Body Diffusion-weighted MR Imaging in Oncology. Magnetic Resonance Imaging Clinics of North America, 2016, 24, 31-44.	1.1	17
70	Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice. Journal of Magnetic Resonance Imaging, 2015, 42, 1190-1202.	3.4	274
71	Imaging of Tumor Angiogenesis for Radiologists—Part 1: Biological and Technical Basis. Current Problems in Diagnostic Radiology, 2015, 44, 407-424.	1.4	45
72	Imaging of Tumor Angiogenesis for Radiologists—Part 2: Clinical Utility. Current Problems in Diagnostic Radiology, 2015, 44, 425-436.	1.4	15

#	Article	IF	CITATIONS
73	Childhood extracranial neoplasms: the role of imaging in drug development and clinical trials. Pediatric Radiology, 2015, 45, 1600-1615.	2.0	4
74	Utility of preoperative ferumoxtran-10 MRI to evaluate retroperitoneal lymph node metastasis in advanced cervical cancer: Results of ACRIN 6671/GOG 0233. European Journal of Radiology Open, 2015, 2, 11-18.	1.6	10
75	Demonstration of the reproducibility of free-breathing diffusion-weighted MRI and dynamic contrast enhanced MRI in children with solid tumours: a pilot study. European Radiology, 2015, 25, 2641-2650.	4.5	22
76	Diffusion-weighted MR neurography for the assessment of brachial plexopathy in oncological practice. Cancer Imaging, 2015, 15, 6.	2.8	23
77	Response evaluation in mesothelioma: Beyond RECIST. Lung Cancer, 2015, 90, 433-441.	2.0	25
78	Intravoxel incoherent imaging of renal fibrosis induced in a murine model of unilateral ureteral obstruction. Magnetic Resonance Imaging, 2015, 33, 1324-1328.	1.8	25
79	Characterizing Heterogeneity within Head and Neck Lesions Using Cluster Analysis of Multi-Parametric MRI Data. PLoS ONE, 2015, 10, e0138545.	2.5	6
80	Assessment of Treatment Response by Total Tumor Volume and Global Apparent Diffusion Coefficient Using Diffusion-Weighted MRI in Patients with Metastatic Bone Disease: A Feasibility Study. PLoS ONE, 2014, 9, e91779.	2.5	104
81	Reduced Warburg Effect in Cancer Cells Undergoing Autophagy: Steady- State 1H-MRS and Real-Time Hyperpolarized 13C-MRS Studies. PLoS ONE, 2014, 9, e92645.	2.5	17
82	Early Treatment Response in Non-Small Cell Lung Cancer Patients Using Diffusion-Weighted Imaging and Functional Diffusion Maps – A Feasibility Study. PLoS ONE, 2014, 9, e108052.	2.5	17
83	Perfusion Imaging in Liver MRI. Magnetic Resonance Imaging Clinics of North America, 2014, 22, 417-432.	1.1	12
84	Diffusion-Weighted MR Imaging in Oncology. Current Radiology Reports, 2014, 2, 1.	1.4	4
85	Intrinsic Susceptibility MRI Identifies Tumors with ALKF1174L Mutation in Genetically-Engineered Murine Models of High-Risk Neuroblastoma. PLoS ONE, 2014, 9, e92886.	2.5	16
86	Competing Technology for PET/Computed Tomography. PET Clinics, 2013, 8, 259-277.	3.0	1
87	Evaluation of Clinically Translatable MR Imaging Biomarkers of Therapeutic Response in the TH-MYCNTransgenic Mouse Model of Neuroblastoma. Radiology, 2013, 266, 130-140.	7.3	33
88	Liver-specific agents for contrast-enhanced MRI: role in oncological imaging. Cancer Imaging, 2013, 13, 567-579.	2.8	44
89	Combination of chemical suppression techniques for dual suppression of fat and silicone at diffusion-weighted MR imaging in women with breast implants. European Radiology, 2012, 22, 2648-2653.	4.5	14
90	Diffusion-Weighted Imaging of the Male Pelvis. Radiologic Clinics of North America, 2012, 50, 1127-1144.	1.8	11

#	Article	IF	CITATIONS
91	Whole-Body Diffusion-Weighted MRI: Tips, Tricks, and Pitfalls. American Journal of Roentgenology, 2012, 199, 252-262.	2.2	158
92	Liver-specific contrast agents. Cancer Imaging, 2012, 12, 363-364.	2.8	3
93	Intravoxel Incoherent Motion in Body Diffusion-Weighted MRI: Reality and Challenges. American Journal of Roentgenology, 2011, 196, 1351-1361.	2.2	469
94	Diagnostic Accuracy of Nodal Enhancement Pattern of Rectal Cancer at MRI Enhanced With Ultrasmall Superparamagnetic Iron Oxide: Findings in Pathologically Matched Mesorectal Lymph Nodes. American Journal of Roentgenology, 2010, 194, W505-W513.	2.2	75
95	Functional Magnetic Resonance Imaging of the Liver: Parametric Assessments Beyond Morphology. Magnetic Resonance Imaging Clinics of North America, 2010, 18, 565-585.	1.1	10
96	Nanoparticles in rectal cancer imaging. Cancer Biomarkers, 2009, 5, 89-98.	1.7	15
97	Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two-centre phase I clinical trial. European Radiology, 2009, 19, 2728-2738.	4.5	151
98	Evaluating Mesorectal Lymph Nodes in Rectal Cancer Before and After Neoadjuvant Chemoradiation Using Thin-Section T2-Weighted Magnetic Resonance Imaging. International Journal of Radiation Oncology Biology Physics, 2008, 71, 456-461.	0.8	126
99	Critical questions in the imaging of colorectal hepatic metastases. Cancer Imaging, 2008, 8, S69-S78.	2.8	3
100	The Relationship between MR Demonstration of Extramural Venous Invasion and Nodal Disease in Rectal Cancer. Clinical Medicine Oncology, 2008, 2, CMO.S370.	0.3	35
101	Diagnostic Accuracy of Rim and Segmental MRI Enhancement of Colorectal Hepatic Metastasis After Administration of Mangafodipir Trisodium. American Journal of Roentgenology, 2007, 188, W154-W161.	2.2	15
102	Predicting Response of Colorectal Hepatic Metastasis: Value of Pretreatment Apparent Diffusion Coefficients. American Journal of Roentgenology, 2007, 188, 1001-1008.	2.2	324
103	Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology. American Journal of Roentgenology, 2007, 188, 1622-1635.	2.2	1,730
104	Practical Aspects of Assessing Tumors Using Clinical Diffusion-weighted Imaging in the Body. Magnetic Resonance in Medical Sciences, 2007, 6, 211-224.	2.0	191
105	Rectal Cancer: Mesorectal Lymph Nodes at MR Imaging with USPIO versus Histopathologic Findings—Initial Observations. Radiology, 2004, 231, 91-99.	7.3	244
106	New Horizons in Oncologic Imaging. New England Journal of Medicine, 2003, 348, 2487-2488.	27.0	45