Sukwon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1270930/publications.pdf

Version: 2024-02-01

623734 526287 27 951 14 27 h-index citations g-index papers 28 28 28 1129 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	GSK- $3\hat{l}^2$ activation is required for ZIP-induced disruption of learned fear. Scientific Reports, 2020, 10, 18227.	3.3	3
2	Posterior parietal cortex mediates fear renewal in a novel context. Molecular Brain, 2020, 13, 16.	2.6	7
3	Endogenous amyloid- \hat{l}^2 mediates memory forgetting in the normal brain. Biochemical and Biophysical Research Communications, 2018, 506, 492-497.	2.1	5
4	Amount of fear extinction changes its underlying mechanisms. ELife, 2017, 6, .	6.0	66
5	Sound tuning of amygdala plasticity in auditory fear conditioning. Scientific Reports, 2016, 6, 31069.	3.3	27
6	mGluR2/3 in the Lateral Amygdala is Required for Fear Extinction: Cortical Input Synapses onto the Lateral Amygdala as a Target Site of the mGluR2/3 Action. Neuropsychopharmacology, 2015, 40, 2916-2928.	5.4	16
7	ABA Renewal Involves Enhancements in Both GluA2-Lacking AMPA Receptor Activity and GluA1 Phosphorylation in the Lateral Amygdala. PLoS ONE, 2014, 9, e100108.	2.5	9
8	Group I mGluR-dependent depotentiation in the lateral amygdala does not require the removal of calcium-permeable AMPA receptors. Frontiers in Behavioral Neuroscience, 2014, 8, 269.	2.0	3
9	Quantitative proteomics of auditory fear conditioning. Biochemical and Biophysical Research Communications, 2013, 434, 87-94.	2.1	15
10	Quantitative Proteomic Analysis of the Hippocampus in the 5XFAD Mouse Model at Early Stages of Alzheimer's Disease Pathology. Journal of Alzheimer's Disease, 2013, 36, 321-334.	2.6	39
11	GluA1 phosphorylation at serine 831 in the lateral amygdala is required for fear renewal. Nature Neuroscience, 2013, 16, 1436-1444.	14.8	45
12	AMPA receptor exchange underlies transient memory destabilization on retrieval. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8218-8223.	7.1	131
13	Ex vivo depotentiation of conditioning-induced potentiation at thalamic input synapses onto the lateral amygdala requires GluN2B-containing NMDA receptors. Neuroscience Letters, 2012, 530, 121-126.	2.1	11
14	LY404187, a potentiator of AMPARs, enhances both the amplitude and 1/CV2 of AMPA EPSCs but not NMDA EPSCs at CA3–CA1 synapses in the hippocampus of neonatal rats. Neuroscience Letters, 2012, 531, 193-197.	2.1	3
15	Fear conditioning occludes late-phase long-term potentiation at thalamic input synapses onto the lateral amygdala in rat brain slices. Neuroscience Letters, 2012, 506, 121-125.	2.1	8
16	Modulation of fear memory by retrieval and extinction: a clue for memory deconsolidation. Reviews in the Neurosciences, 2011, 22, 205-229.	2.9	11
17	In vitro synaptic reconsolidation in amygdala slices prepared from rat brains. Biochemical and Biophysical Research Communications, 2011, 407, 339-342.	2.1	6
18	Reversible Plasticity of Fear Memory-Encoding Amygdala Synaptic Circuits Even after Fear Memory Consolidation. PLoS ONE, 2011, 6, e24260.	2.5	22

Sukwon Lee

#	Article	IF	CITATION
19	Impairment of Fear Memory Consolidation in Maternally Stressed Male Mouse Offspring: Evidence for Nongenomic Glucocorticoid Action on the Amygdala. Journal of Neuroscience, 2011, 31, 7131-7140.	3.6	43
20	Reactivation of Fear Memory Renders Consolidated Amygdala Synapses Labile. Journal of Neuroscience, 2010, 30, 9631-9640.	3.6	49
21	Extinction of cued fear memory involves a distinct form of depotentiation at cortical input synapses onto the lateral amygdala. European Journal of Neuroscience, 2009, 30, 2089-2099.	2.6	70
22	Amygdala depotentiation ex vivo requires mitogen-activated protein kinases and protein synthesis. NeuroReport, 2009, 20, 517-520.	1.2	10
23	Amygdala depotentiation and fear extinction. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20955-20960.	7.1	234
24	Blockade of amygdala metabotropic glutamate receptor subtype 1 impairs fear extinction. Biochemical and Biophysical Research Communications, 2007, 355, 188-193.	2.1	75
25	Hyperpolarization-activated currents control the excitability of principal neurons in the basolateral amygdala. Biochemical and Biophysical Research Communications, 2007, 361, 718-724.	2.1	34
26	Identification of estrogen-regulated genes in the mouse uterus using a delayed-implantation model. Molecular Reproduction and Development, 2003, 64, 405-413.	2.0	6
27	Cell Differentiation of Gonadotropin-Releasing Hormone Neurons and Alternative RNA Splicing of the Gonadotropin-Releasing Hormone Transcript. Neuroendocrinology, 2003, 77, 282-290.	2.5	2