Yvonne Willi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1270798/publications.pdf

Version: 2024-02-01

50	2,972	24 h-index	50
papers	citations		g-index
53	53	53	3896
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Limits to the Adaptive Potential of Small Populations. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 433-458.	8.3	705
2	Detecting genetic responses to environmental change. Nature Reviews Genetics, 2008, 9, 421-432.	16.3	434
3	Enhancement of Farmland Biodiversity within Set-Aside Land. Conservation Biology, 2004, 18, 987-994.	4.7	176
4	Genetic isolation of fragmented populations is exacerbated by drift and selection. Journal of Evolutionary Biology, 2007, 20, 534-542.	1.7	123
5	Demographic factors and genetic variation influence population persistence under environmental change. Journal of Evolutionary Biology, 2009, 22, 124-133.	1.7	114
6	A Threefold Genetic Allee Effect. Genetics, 2005, 169, 2255-2265.	2.9	101
7	Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	92
8	Evolutionary shifts to selfâ€fertilisation restricted to geographic range margins in North American <i>Arabidopsis lyrata </i> . Ecology Letters, 2014, 17, 484-490.	6.4	87
9	Accumulation of Mutational Load at the Edges of a Species Range. Molecular Biology and Evolution, 2018, 35, 781-791.	8.9	86
10	Genetic rescue persists beyond first-generation outbreeding in small populations of a rare plant. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2357-2364.	2.6	84
11	Genetic rescue in interconnected populations of small and large size of the self-incompatible Ranunculus reptans. Heredity, 2005, 95, 437-443.	2.6	66
12	Population Bottlenecks Increase Additive Genetic Variance But Do Not Break a Selection Limit in Rain Forest Drosophila. Genetics, 2008, 179, 2135-2146.	2.9	63
13	Drift load in populations of small size and low density. Heredity, 2013, 110, 296-302.	2.6	54
14	THE CHANGE IN QUANTITATIVE GENETIC VARIATION WITH INBREEDING. Evolution; International Journal of Organic Evolution, 2006, 60, 2428-2434.	2.3	52
15	The Battle of the Sexes over Seed Size: Support for Both Kinship Genomic Imprinting and Interlocus Contest Evolution. American Naturalist, 2013, 181, 787-798.	2.1	45
16	Evolutionary dynamics of mating system shifts in <i>Arabidopsis lyrata</i> . Journal of Evolutionary Biology, 2010, 23, 2123-2131.	1.7	41
17	MUTATIONAL MELTDOWN IN SELFING (i) ARABIDOPSIS LYRATA (i). Evolution; International Journal of Organic Evolution, 2013, 67, 806-815.	2.3	41
18	Validation of Pooled Whole-Genome Re-Sequencing in Arabidopsis lyrata. PLoS ONE, 2015, 10, e0140462.	2.5	40

#	Article	IF	CITATIONS
19	THE CHANGE IN QUANTITATIVE GENETIC VARIATION WITH INBREEDING. Evolution; International Journal of Organic Evolution, 2006, 60, 2428.	2.3	37
20	Genomic compatibility occurs over a wide range of parental genetic similarity in an outcrossing plant. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1333-1338.	2.6	34
21	The relative importance of factors determining genetic drift: mating system, spatial genetic structure, habitat and census size in <i>Arabidopsis lyrata</i> . New Phytologist, 2011, 189, 1200-1209.	7.3	33
22	Temperature-Stress Resistance and Tolerance along a Latitudinal Cline in North American Arabidopsis lyrata. PLoS ONE, 2015, 10, e0131808.	2.5	32
23	An assay for quantitative virulence in <i><scp>R</scp>hynchosporium commune</i> reveals an association between effector genotype and virulence. Plant Pathology, 2014, 63, 405-414.	2.4	30
24	Latitudinal trait variation and responses to drought in Arabidopsis lyrata. Oecologia, 2014, 175, 577-587.	2.0	29
25	A review on trade-offs at the warm and cold ends of geographical distributions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210022.	4.0	29
26	A Practical Guide to the Study of Distribution Limits. American Naturalist, 2019, 193, 773-785.	2.1	28
27	Expressed mutational load increases toward the edge of a species' geographic range. Evolution; International Journal of Organic Evolution, 2020, 74, 1711-1723.	2.3	26
28	Environmental marginality and geographic range limits: a case study with <i>Arabidopsis lyrata</i> ssp. <i>lyrata</i> . Ecography, 2018, 41, 622-634.	4.5	24
29	Microgeographic adaptation linked to forest fragmentation and habitat quality in the tropical fruit fly <i>Drosophila birchii</i> . Oikos, 2012, 121, 1627-1637.	2.7	22
30	The Influence of Genetic Drift and Selection on Quantitative Traits in a Plant Pathogenic Fungus. PLoS ONE, 2014, 9, e112523.	2.5	21
31	Evolution towards selfâ€compatibility when mates are limited. Journal of Evolutionary Biology, 2009, 22, 1967-1973.	1.7	20
32	The change in quantitative genetic variation with inbreeding. Evolution; International Journal of Organic Evolution, 2006, 60, 2428-34.	2.3	20
33	Metabarcoding of honey to assess differences in plant-pollinator interactions between urban and non-urban sites. Apidologie, 2019, 50, 317-329.	2.0	19
34	Quantitative Genetic Architecture at Latitudinal Range Boundaries: Reduced Variation but Higher Trait Independence. American Naturalist, 2016, 187, 667-677.	2.1	17
35	The adaptive potential of a plant pathogenic fungus, Rhizoctonia solani AG-3, under heat and fungicide stress. Genetica, 2011, 139, 903-908.	1.1	15
36	Weak impact of fineâ€scale landscape heterogeneity on evolutionary potential in <i><scp>A</scp>rabidopsis lyrata</i> . Journal of Evolutionary Biology, 2013, 26, 2331-2340.	1.7	13

#	Article	IF	CITATIONS
37	Demographic Processes Linked to Genetic Diversity and Positive Selection across a Species' Range. Plant Communications, 2020, 1, 100111.	7.7	13
38	Thermal acclimation in <i>Arabidopsis lyrata</i> genotypic costs and transcriptional changes. Journal of Evolutionary Biology, 2018, 31, 123-135.		12
39	Lineageâ€specific adaptation to climate involves flowering time in North American <i>Arabidopsis lyrata</i> . Molecular Ecology, 2020, 29, 1436-1451.	3.9	12
40	Drivers of linkage disequilibrium across a species' geographic range. PLoS Genetics, 2021, 17, e1009477.	3.5	12
41	Accumulation of transposable elements in selfing populations of <i>Arabidopsis lyrata</i> supports the ectopic recombination model of transposon evolution. New Phytologist, 2018, 219, 767-778.	7.3	9
42	Niche breadth and elevational range size: a comparative study on Middle-European Brassicaceae species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210005.	4.0	9
43	Meta-Analysis of Farmland Biodiversity within Set-Aside Land: Reply to Kleijn and Baldi. Conservation Biology, 2005, 19, 967-968.	4.7	7
44	Temperature-mediated microhabitat choice and development time based on the <i>pgm </i> locus in the yellow dung fly <i>Scathophaga stercoraria </i> . Biological Journal of the Linnean Society, 2012, 107, 686-696.	1.6	7
45	The relevance of mutation load for species range limits. American Journal of Botany, 2019, 106, 757-759.	1.7	7
46	What drives species' distributions along elevational gradients? Macroecological and â€evolutionary insights from Brassicaceae of the central Alps. Global Ecology and Biogeography, 2021, 30, 1030-1042.	5.8	7
47	Reduced climate adaptation at range edges in North American <i>Arabidopsis lyrata</i> Ecology and Biogeography, 2022, 31, 1066-1077.	5.8	7
48	Genetic differentiation in life history traits and thermal stress performance across a heterogeneous dune landscape in Arabidopsis lyrata. Annals of Botany, 2018, 122, 473-484.	2.9	6
49	Environment dependence of the expression of mutational load and species' range limits. Journal of Evolutionary Biology, 2022, 35, 731-741.	1.7	6
50	Postglacial ecotype formation under outcrossing and selfâ€fertilization in Arabidopsis lyrata. Molecular Ecology, 2019, 28, 1043-1055.	3.9	5