
Salomon Manier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1270492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic complexity of multiple myeloma and its clinical implications. Nature Reviews Clinical Oncology, 2017, 14, 100-113.	27.6	413
2	Targeting the bone marrow microenvironment in multiple myeloma. Immunological Reviews, 2015, 263, 160-172.	6.0	323
3	Daratumumab-Based Treatment for Immunoglobulin Light-Chain Amyloidosis. New England Journal of Medicine, 2021, 385, 46-58.	27.0	268
4	Engineered nanomedicine for myeloma and bone microenvironment targeting. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10287-10292.	7.1	234
5	Final analysis of survival outcomes in the phase 3 FIRST trial of up-front treatment for multiple myeloma. Blood, 2018, 131, 301-310.	1.4	216
6	Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood, 2017, 129, 2429-2436.	1.4	214
7	Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Nature Cancer, 2020, 1, 493-506.	13.2	209
8	Regulation of microRNAs in cancer metastasis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 255-265.	7.4	132
9	CXCR4 Regulates Extra-Medullary Myeloma through Epithelial-Mesenchymal-Transition-like Transcriptional Activation. Cell Reports, 2015, 12, 622-635.	6.4	123
10	A simplified frailty scale predicts outcomes in transplant-ineligible patients with newly diagnosed multiple myeloma treated in the FIRST (MM-020) trial. Leukemia, 2020, 34, 224-233.	7.2	122
11	Genomic Profiling of Smoldering Multiple Myeloma Identifies Patients at a High Risk of Disease Progression. Journal of Clinical Oncology, 2020, 38, 2380-2389.	1.6	110
12	Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model. Blood, 2014, 124, 3250-3259.	1.4	109
13	Clonal hematopoiesis is associated with adverse outcomes in multiple myeloma patients undergoing transplant. Nature Communications, 2020, 11, 2996.	12.8	98
14	The sialyltransferase ST3GAL6 influences homing and survival in multiple myeloma. Blood, 2014, 124, 1765-1776.	1.4	97
15	The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma. Cell Reports, 2017, 19, 218-224.	6.4	92
16	The cancer glycome: Carbohydrates as mediators of metastasis. Blood Reviews, 2015, 29, 269-279.	5.7	91
17	Targeting MYC in multiple myeloma. Leukemia, 2018, 32, 1295-1306.	7.2	89
18	Blocking IFNAR1 inhibits multiple myeloma–driven Treg expansion and immunosuppression. Journal of Clinical Investigation, 2018, 128, 2487-2499.	8.2	80

#	Article	IF	CITATIONS
19	Proteomic characterization of human multiple myeloma bone marrow extracellular matrix. Leukemia, 2017, 31, 2426-2434.	7.2	72
20	The LIN28B/let-7 axis is a novel therapeutic pathway in multiple myeloma. Leukemia, 2017, 31, 853-860.	7.2	72
21	Role of endothelial progenitor cells in cancer progression. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 26-39.	7.4	70
22	Antibody-Dependent Cellular Phagocytosis by Macrophages is a Novel Mechanism of Action of Elotuzumab. Molecular Cancer Therapeutics, 2018, 17, 1454-1463.	4.1	70
23	Myeloma MRD by deep sequencing from circulating tumor DNA does not correlate with results obtained in the bone marrow. Blood Advances, 2018, 2, 2811-2813.	5.2	69
24	International harmonization in performing and reporting minimal residual disease assessment in multiple myeloma trials. Leukemia, 2021, 35, 18-30.	7.2	69
25	Genome instability in multiple myeloma. Leukemia, 2020, 34, 2887-2897.	7.2	63
26	Circulating tumor markers: harmonizing the yin and yang of CTCs and ctDNA for precision medicine. Annals of Oncology, 2017, 28, 468-477.	1.2	62
27	Metformin Affects Cortical Bone Mass and Marrow Adiposity in Diet-Induced Obesity in Male Mice. Endocrinology, 2017, 158, 3369-3385.	2.8	54
28	Inhibiting the oncogenic translation program is an effective therapeutic strategy in multiple myeloma. Science Translational Medicine, 2017, 9, .	12.4	53
29	A predictive model for risk of early grade ≥ 3 infection in patients with multiple myeloma not eligible for transplant: analysis of the FIRST trial. Leukemia, 2018, 32, 1404-1413.	7.2	53
30	Pyk2 promotes tumor progression in multiple myeloma. Blood, 2014, 124, 2675-2686.	1.4	51
31	Deregulation and Targeting of TP53 Pathway in Multiple Myeloma. Frontiers in Oncology, 2018, 8, 665.	2.8	47
32	Targeting vasculogenesis to prevent progression in multiple myeloma. Leukemia, 2016, 30, 1103-1115.	7.2	46
33	Genome wide SNP array identified multiple mechanisms of genetic changes in Waldenstrom macroglobulinemia. American Journal of Hematology, 2013, 88, 948-954.	4.1	45
34	Platelets Enhance Multiple Myeloma Progression via IL-1Î ² Upregulation. Clinical Cancer Research, 2018, 24, 2430-2439.	7.0	44
35	Current state and next-generation CAR-T cells in multiple myeloma. Blood Reviews, 2022, 54, 100929.	5.7	38
36	Mutational Profile and Prognostic Relevance of Circulating Tumor Cells in Multiple Myeloma. Blood, 2015, 126, 23-23.	1.4	37

#	Article	IF	CITATIONS
37	Inhibition of microRNA-138 enhances bone formation in multiple myeloma bone marrow niche. Leukemia, 2018, 32, 1739-1750.	7.2	34
38	Cell autonomous and microenvironmental regulation of tumor progression in precursor states of multiple myeloma. Current Opinion in Hematology, 2016, 23, 426-433.	2.5	33
39	Exosomes in Tumor Angiogenesis. Methods in Molecular Biology, 2016, 1464, 25-34.	0.9	32
40	Effective anti-BCMA retreatment in multiple myeloma. Blood Advances, 2021, 5, 3016-3020.	5.2	30
41	Global Epigenetic Regulation of MicroRNAs in Multiple Myeloma. PLoS ONE, 2014, 9, e110973.	2.5	29
42	lgA kappa/IgA lambda heavy/light chain assessment in the management of patients with IgA myeloma. Cancer, 2014, 120, 3952-3957.	4.1	29
43	Daratumumab is effective in the relapsed or refractory systemic lightâ€chain amyloidosis but associated with high infection burden in a frail realâ€life population. British Journal of Haematology, 2020, 188, e24-e27.	2.5	26
44	Progression signature underlies clonal evolution and dissemination of multiple myeloma. Blood, 2021, 137, 2360-2372.	1.4	26
45	Randomized Trial Comparing Double Versus Triple Bortezomib-Based Regimen in Patients With Multiple Myeloma and Acute Kidney Injury Due to Cast Nephropathy. Journal of Clinical Oncology, 2020, 38, 2647-2657.	1.6	24
46	Novel M-Component Based Biomarkers in Waldenström's Macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, 164-167.	0.4	23
47	Prognostic value of PINI index in patients with multiple myeloma. European Journal of Haematology, 2012, 88, 306-313.	2.2	22
48	Exome sequencing reveals recurrent germ line variants in patients with familial Waldenström macroglobulinemia. Blood, 2016, 127, 2598-2606.	1.4	22
49	Genomic Aberrations in Multiple Myeloma. Cancer Treatment and Research, 2016, 169, 23-34.	0.5	21
50	Response to pneumococcal vaccination in multiple myeloma. Cancer Medicine, 2019, 8, 3822-3830.	2.8	20
51	High-Throughput Genomic Analysis in Waldenström's Macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, 106-108.	0.4	19
52	Phase II Trial of Combination of Elotuzumab, Lenalidomide, and Dexamethasone in High-Risk Smoldering Multiple Myeloma. Blood, 2018, 132, 154-154.	1.4	19
53	Daratumumab and dexamethasone is safe and effective for triple refractory myeloma patients: final results of the IFM 2014â€04 (Etoile du Nord) trial. British Journal of Haematology, 2019, 187, 319-327.	2.5	18
54	Profiling of circulating exosomal miRNAs in patients with Waldenström Macroglobulinemia. PLoS ONE, 2018, 13, e0204589.	2.5	17

#	Article	IF	CITATIONS
55	Immunotherapy in Multiple Myeloma: Accelerating on the Path to the Patient. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, 332-344.	0.4	16
56	Bortezomib and high-dose melphalan conditioning regimen in frontline multiple myeloma: an IFM randomized phase 3 study. Blood, 2022, 139, 2747-2757.	1.4	16
57	Immunomodulator drug-based therapy in myeloma and the occurrence of thrombosis. Expert Review of Hematology, 2012, 5, 619-629.	2.2	15
58	Citron Rho-interacting kinase silencing causes cytokinesis failure and reduces tumor growth in multiple myeloma. Blood Advances, 2019, 3, 995-1002.	5.2	15
59	Mechanisms of Activity of the TORC1 Inhibitor Everolimus in Waldenstrom Macroglobulinemia. Clinical Cancer Research, 2012, 18, 6609-6622.	7.0	14
60	microRNA Aberrations in Waldenström Macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2013, 13, 205-207.	0.4	14
61	Targeting survival and cell trafficking in multiple myeloma and <scp>W</scp> aldenstrom macroglobulinemia using panâ€elass <scp>I PI</scp> 3 <scp>K</scp> inhibitor, buparlisib. American Journal of Hematology, 2014, 89, 1030-1036.	4.1	14
62	Founding Precision Therapy in 1q-Amplified Multiple Myeloma. Blood, 2018, 132, 1007-1007.	1.4	12
63	Distinct roles of class I PI3K isoforms in multiple myeloma cell survival and dissemination. Blood Cancer Journal, 2014, 4, e204-e204.	6.2	11
64	Bortezomib, Lenalidomide and Dexamethasone (VRd) Followed By Ciltacabtagene Autoleucel Versus Vrd Followed By Lenalidomide and Dexamethasone (Rd) Maintenance in Patients with Newly Diagnosed Multiple Myeloma Not Intended for Transplant: A Randomized, Phase 3 Study (CARTITUDE-5). Blood, 2021, 138, 1835-1835.	1.4	10
65	lgMκ and IgMλ Measurements for the Assessment of Patients with Waldenström's Macroglobulinaemia. Clinical Cancer Research, 2016, 22, 5152-5158.	7.0	9
66	Genomic Studies Have Identified Multiple Mechanisms of Genetic Changes in Waldenström Macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2013, 13, 202-204.	0.4	8
67	Dissecting the Mechanisms of Activity of SLAMF7 and the Targeting Antibody Elotuzumab in Multiple Myeloma. Blood, 2014, 124, 3431-3431.	1.4	8
68	Whole-Exome Sequencing and Targeted Deep Sequencing of cfDNA Enables a Comprehensive Mutational Profiling of Multiple Myeloma. Blood, 2016, 128, 197-197.	1.4	8
69	Epigenetics in Multiple Myeloma. Cancer Treatment and Research, 2016, 169, 35-49.	0.5	7
70	Role of IRF4 in resistance to immunomodulatory (IMid) compounds® in Waldenström's macroglobulinemia. Oncotarget, 2017, 8, 112917-112927.	1.8	5
71	A Prospective Phase II of Daratumumab in Previously Treated Systemic Light-Chain (AL) Amyloidosis: Updated Results. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e40-e41.	0.4	4
72	Can palliative care consultation increase integration of palliative care for patients with hematologic malignancies?. Blood Advances, 2021, 5, 2123-2127.	5.2	4

#	Article	IF	CITATIONS
73	Efficacy and Safety of Daratumumab in a Frail Real-Life Relapsed or Refractory Systemic Light-Chain Amyloidosis Population (AL): Report on 15 Cases from the North of France. Blood, 2018, 132, 5660-5660.	1.4	4
74	In Vivo Targeting of Stromal-Derived Factor-1 As a Strategy to Prevent Myeloma Cell Dissemination to Distant Bone Marrow Niches. Blood, 2012, 120, 440-440.	1.4	4
75	Bone Marrow Mobilization Of Endothelial Progenitor Cells Represents An Early Pathogenic Event During Multiple Myeloma Progression. Blood, 2013, 122, 680-680.	1.4	4
76	Characterization of the Role of Regulatory T Cells (Tregs) in Inducing Progression of Multiple Myeloma. Blood, 2015, 126, 502-502.	1.4	4
77	Future Directions in the Evaluation and Treatment of Precursor Plasma Cell Disorders. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 36, e400-e406.	3.8	4
78	Circulating Exosomal microRNAs Are Prognostic Markers in Multiple Myeloma. Blood, 2015, 126, 1770-1770.	1.4	4
79	Ixazomib and Daratumumab without Dexamethasone (I-Dara) in Elderly Frail RRMM Patients. a Multicenter Phase 2 Study (IFM 2018-02) of the Intergroupe Francophone Du Myélome (IFM). Blood, 2021, 138, 83-83.	1.4	4
80	The Role of miRNAs in Plasma Cell Dyscrasias. MicroRNA (Shariqah, United Arab Emirates), 2014, 2, 165-173.	1.2	3
81	A novel in vivo model for studying conditional dual loss of BLIMPâ€1 and p53 in Bâ€cells, leading to tumor transformation. American Journal of Hematology, 2017, 92, E138-E145.	4.1	3
82	Antigen excess pitfall for free light chains measurements solved by ELISA assay. American Journal of Hematology, 2019, 94, E120-E122.	4.1	3
83	Lin28B/Let-7 Axis Regulates Multiple Myeloma Proliferation By Enhancing c-Myc and Ras Survival Pathways. Blood, 2013, 122, 273-273.	1.4	3
84	Hevylite®, a New Marker of Tumor Measurement In Waldenstrom Macroglobulinemia. Blood, 2010, 116, 5076-5076.	1.4	3
85	Can Patient-Reported Ocular Symptoms Guide Dose Modifications in Patients with Relapsed/Refractory Multiple Myeloma Receiving Belantamab Mafodotin?. Blood, 2021, 138, 2746-2746.	1.4	3
86	Future Directions in the Evaluation and Treatment of Precursor Plasma Cell Disorders. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, e400-e406.	3.8	2
87	Hevylite, a Novel M-Component Based Biomarkers of Response to Therapy and Survival in Waldenstrom Macroglobulinemia. Blood, 2011, 118, 2667-2667.	1.4	2
88	Comparative miRNA Expression Profiling of Circulating Exosomes From MGUS and Smoldering Multiple Myeloma Patients. Blood, 2012, 120, 3975-3975.	1.4	2
89	Driver Mutation in Waldenstrom's Macroglobullinemia and Their Clonal Heterogeneity during Progression and Relapse. Blood, 2016, 128, 1092-1092.	1.4	2
90	In Vivo Genome-Wide Crispr Library Screen in a Xenograft Mouse Model of Tumor Growth and Metastasis of Multiple Myeloma. Blood, 2016, 128, 1137-1137.	1.4	2

#	Article	IF	CITATIONS
91	Mirna Expression Profiling and Proteomic Analysis Of Circulating Exosomes From Multiple Myeloma Patients. Blood, 2013, 122, 3086-3086.	1.4	2
92	Real-Life Survival Data after Triple-Exposure to Proteasome Inhibitors (PI), Immunomodulators (IMID) and Anti-CD38 in Multiple Myeloma Patients in the Emmy Cohort. Blood, 2021, 138, 3764-3764.	1.4	2
93	Single-Cell RNA-Sequencing Identifies Immune Biomarkers of Response to Immunotherapy in Patients with High-Risk Smoldering Myeloma. Blood, 2021, 138, 330-330.	1.4	2
94	In Multiple Myeloma, High-Risk Secondary Genetic Events Observed at Relapse Are Present from the Diagnosis in Tiny Undetectable Subclones. Blood, 2021, 138, 77-77.	1.4	2
95	Reduced steady state-based peripheral blood stem cell harvest rate in multiple myeloma treated with bortezomib-based induction regimens. Leukemia, 2012, 26, 2552-2554.	7.2	1
96	Genomic profiling of smoldering multiple myeloma identifies patients at a high risk of disease progression Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e5-e6.	0.4	1
97	On the road to molecular prognostication in SMM. Leukemia, 2020, 34, 331-332.	7.2	1
98	A High-Throughput Drug Screen Reveals a Novel Compound Class That Significantly Depletes IRF4 Expression in Multiple Myeloma. Blood, 2019, 134, 5545-5545.	1.4	1
99	Clonal-Heterogeneity and Propensity for Bone Metastasis in Multiple Myeloma. Blood, 2014, 124, 3370-3370.	1.4	1
100	The EOS® System for the Detection of Bone Lesions in Patients with Multiple Myeloma,. Blood, 2011, 118, 3921-3921.	1.4	1
101	IgA Hevylite® Test As a Surrogate to Serum Protein Electrophoresis (SPEP) or Nephelometry in the Management of IgA Myeloma. Blood, 2012, 120, 3970-3970.	1.4	1
102	Myeloma, IMiDs and thrombosis. Hematologie, 2013, 19, 33-40.	0.0	1
103	Proteomic Characterization of the Multiple Myeloma Bone Marrow Extracellular Matrix. Blood, 2014, 124, 2051-2051.	1.4	1
104	Comparison of Waldenstrom Macroglobulinemia Responses Using Immunoglobulin Heavy / Light Chain Analysis and Conventional Electrophoresis Techniques. Blood, 2014, 124, 2978-2978.	1.4	1
105	Platelets/Megakaryocytes Are Critical Regulators of Tumor Progression in Multiple Myeloma. Blood, 2015, 126, 1793-1793.	1.4	1
106	Profiling of Circulating Exosomes in Patients with Waldenström Macroglobulinemia. Blood, 2016, 128, 2940-2940.	1.4	1
107	Pathology and Genetics of Multiple Myeloma. , 2018, , .		0
108	Progression signature underlies clonal evolution and dissemination of Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e19-e20.	0.4	0

#	Article	IF	CITATIONS
109	Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e27.	0.4	0
110	In vivo modeling of clonal competition using CRISPR-based gene editing reveals novel fitness variables in multiple myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e110.	0.4	0
111	Antibody-drug conjugate in multiple myeloma. Hematologie, 2021, 27, 26-34.	0.0	Ο
112	A20 Gene Deregulation In Waldenstrom's Macroglobulinemia Blood, 2010, 116, 3628-3628.	1.4	0
113	SOCS1 and SOCS3 Genes Are Not Methylated In Waldenstrom Macroglobulinemia. Blood, 2010, 116, 2481-2481.	1.4	Ο
114	90-Yttrium Ibritumomab Tiuxetan (Zevalin) and BEAM Chemotherapy (Z-BEAM) Vs BEAM for Autologous Stem Cell Transplantation in Lymphoma: Toxicity and Long Term Outcome From a Retrospective Multicentric Study of 123 Patients Blood, 2012, 120, 2726-2726.	1.4	0
115	Multiple Myeloma-Derived Bone-Marrow Mesenchymal Stem Cells: Microrna-, Gene Expression-Profiling and Functional Characterization. Blood, 2012, 120, 1837-1837.	1.4	Ο
116	CXCR4 Monoclonal Antibody, BMS-936564 (MDX-1338), Modulates Epithelial to Mesenchymal Transition (EMT) in Multiple Myeloma Cells. Blood, 2012, 120, 4009-4009.	1.4	0
117	Metabolomic Profiling Identifies Mechanisms Regulating Hypoxia-Induced Drug Resistance in Multiple Myeloma. Blood, 2012, 120, 3944-3944.	1.4	0
118	Let-7 Microrna Family Members Regulate Cell Proliferation in Multiple Myeloma. Blood, 2012, 120, 570-570.	1.4	0
119	Extramedullary Disease In Waldenstrom's Macroglobulinemia. Blood, 2013, 122, 1773-1773.	1.4	Ο
120	Silencing The Sialyltransferase Gene ST3GAL6 Inhibits Adhesion and Migration Of Myeloma Cells In Vitro and Reduces The Homing and Proliferation Of Tumor Cells In Vivo. Blood, 2013, 122, 275-275.	1.4	0
121	Microrna-Dependent Modulation Of Osteogenesis In a 3D In Vitro Bone Marrow Model System Of Multiple Myeloma. Blood, 2013, 122, 3093-3093.	1.4	0
122	Citron Rho-Interacting Serine/Threonine kinase (CIT) Is a Novel Therapeutic Target in Multiple Myeloma Cells. Blood, 2014, 124, 3430-3430.	1.4	0
123	Early Trafficking of Bone Marrow Derived-Endothelial Progenitor Cells Promotes Multiple Myeloma Progression. Blood, 2014, 124, 4719-4719.	1.4	0
124	Prognostic Value of Circulating Exosomal microRNAs in 112 Patients with Multiple Myeloma. Blood, 2014, 124, 2056-2056.	1.4	0
125	Can Assessment of Patient Monoclonal Immunoglobulins By Heavy/Light Analysis be Used to Assign Patient Responses Analogous to IMWG Response Criteria?. Blood, 2015, 126, 3042-3042.	1.4	0
126	MYC Regulation Via the LIN28B/Let-7 Axis in Multiple Myeloma. Blood, 2015, 126, 1755-1755.	1.4	0

#	Article	IF	CITATIONS
127	Whole Exome Sequencing and Targeted Sequencing Reveal the Heterogeneity of Genomic Evolution and Mutational Profile in Smoldering Multiple Myeloma. Blood, 2016, 128, 237-237.	1.4	0
128	Microrna-138 Regulates Osteogenic Differentiation and Its Inhibition Presents a Novel Therapeutic Line to Prevent Bone Lytic Lesions in Multiple Myeloma. Blood, 2016, 128, 4483-4483.	1.4	0
129	Dual Conditional Loss of BLIMP-1 and p53 in B-Cells Drives B-Cell Lymphomagenesis. Blood, 2016, 128, 4169-4169.	1.4	0
130	In Vivo Analysis of Clonal Evolution of Multiple Myeloma. Blood, 2016, 128, 799-799.	1.4	0
131	Deciphering Clonal Evolution and Dissemination of Multiple Myeloma Cells In Vivo. Blood, 2018, 132, 55-55.	1.4	0
132	In Vivo Modeling of Clonal Competition Using CRISPR-Based Gene Editing Reveals Novel Fitness Variables in Multiple Myeloma. Blood, 2018, 132, 57-57.	1.4	0
133	Maintenance with Weekly Carfilzomib in Elderly Newly Diagnosed Multiple Myeloma (IFM 2012-03). Blood, 2019, 134, 3190-3190.	1.4	0
134	MYC Overexpressing Multiple Myeloma Are Dependent on GLS1. Blood, 2019, 134, 853-853.	1.4	0
135	Modified Delphi Method Identifies Consensus Areas for Routine Minimal Residual Disease Testing in Multiple Myeloma. Blood, 2021, 138, 1631-1631.	1.4	0