Chee Wei Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1270063/publications.pdf

Version: 2024-02-01

		430874	4	154955	
38	1,879	18		30	
papers	citations	h-index		g-index	
39	39	39		3021	
3,7	3,7	33		3021	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	Citations
1	Probing 10 î¼K stability and residual drifts in the cross-polarized dual-mode stabilization of single-crystal ultrahigh-Q optical resonators. Light: Science and Applications, 2019, 8, 1.	16.6	413
2	Chasing the thermodynamical noise limit in whispering-gallery-mode resonators for ultrastable laser frequency stabilization. Nature Communications, 2017, 8, 8.	12.8	224
3	Gate-tunable frequency combs in graphene–nitride microresonators. Nature, 2018, 558, 410-414.	27.8	182
4	Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light: Science and Applications, 2019, 8, 50.	16.6	164
5	Harnessing high-dimensional hyperentanglement through a biphoton frequency comb. Nature Photonics, 2015, 9, 536-542.	31.4	138
6	Broadband gate-tunable terahertz plasmons in graphene heterostructures. Nature Photonics, 2018, 12, 22-28.	31.4	127
7	Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection. Nano Letters, 2017, 17, 4996-5002.	9.1	73
8	Biochemical sensing in graphene-enhanced microfiber resonators with individual molecule sensitivity and selectivity. Light: Science and Applications, 2019, 8, 107.	16.6	70
9	A broadband chip-scale optical frequency synthesizer at 2.7 \tilde{A} — 10 ^{â°'16} relative uncertainty. Science Advances, 2016, 2, e1501489.	10.3	65
10	Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics. Nature Communications, 2017, 8, 61.	12.8	48
11	Mesoscopic chaos mediated by Drude electron-hole plasma in silicon optomechanical oscillators. Nature Communications, 2017, 8, 15570.	12.8	47
12	Enhanced interlayer neutral excitons and trions in trilayer van der Waals heterostructures. Npj 2D Materials and Applications, 2018, 2, .	7.9	44
13	Globally Stable Microresonator Turing Pattern Formation for Coherent High-Power THz Radiation On-Chip. Physical Review X, 2017, 7, .	8.9	42
14	Nanometric Precision Distance Metrology via Hybrid Spectrally Resolved and Homodyne Interferometry in a Single Soliton Frequency Microcomb. Physical Review Letters, 2021, 126, 023903.	7.8	42
15	A Chipâ€Scale Oscillationâ€Mode Optomechanical Inertial Sensor Near the Thermodynamical Limits. Laser and Photonics Reviews, 2020, 14, 1800329.	8.7	31
16	648 Hilbert-space dimensionality in a biphoton frequency comb: entanglement of formation and Schmidt mode decomposition. Npj Quantum Information, 2021, 7, .	6.7	25
17	Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs. Light: Science and Applications, 2020, 9, 52.	16.6	24
18	Photonic and Plasmonic Guided Modes in Graphene–Silicon Photonic Crystals. ACS Photonics, 2015, 2, 1552-1558.	6.6	23

#	Article	IF	CITATIONS
19	Metasurface wavefront control for high-performance user-natural augmented reality waveguide glasses. Scientific Reports, 2022, 12, 5832.	3.3	15
20	Phonon modes and Raman signatures of <mml:math< td=""><td></td><td></td></mml:math<>		

#	Article	IF	CITATIONS
37	Controlling photons in mesoscopic systems: Precision measurements in frequency combs and optomechanics., 2013,,.		o
38	Observation of dissipative Kerr soliton evolution with panoramic-reconstruction temporal imaging (PARTI)., 2017,,.		0