Chamseddine Guizani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1269822/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellulose-lignin composite fibres as precursors for carbon fibres. Part 1 – Manufacturing and properties of precursor fibres. Carbohydrate Polymers, 2021, 252, 117133.	10.2	38
2	Superbase-based protic ionic liquids for cellulose filament spinning. Cellulose, 2021, 28, 533-547.	4.9	25
3	Hydrophobization of the Man-Made Cellulosic Fibers by Incorporating Plant-Derived Hydrophobic Compounds. ACS Sustainable Chemistry and Engineering, 2021, 9, 4915-4925.	6.7	13
4	Fast and quantitative compositional analysis of hybrid cellulose-based regenerated fibers using thermogravimetric analysis and chemometrics. Cellulose, 2021, 28, 6797-6812.	4.9	6
5	Evolution of carbon nanostructure during pyrolysis of homogeneous chitosan-cellulose composite fibers. Carbon, 2021, 185, 27-38.	10.3	16
6	Air gap spinning of a cellulose solution in [<scp>DBNH</scp>][<scp>OAc</scp>] ionic liquid with a novel vertically arranged spinning bath to simulate a closed loop operation in the loncell® process. Journal of Applied Polymer Science, 2021, 138, 49787.	2.6	16
7	Spinneret geometry modulates the mechanical properties of man-made cellulose fibers. Cellulose, 2021, 28, 11165-11181.	4.9	4
8	Quantitative Raman spectroscopy for the loncellâ,,¢ process. Part 1: comparison of univariate and multivariate calibration methods for the quantification of water and protic ionic liquid components. Cellulose, 2020, 27, 157-170.	4.9	2
9	Quantitative Raman spectroscopy for the Ioncell® process: Part 2—quantification of ionic liquid degradation products and improvement of prediction performance through interval PLS. Cellulose, 2020, 27, 9813-9824.	4.9	1
10	Close Packing of Cellulose and Chitosan in Regenerated Cellulose Fibers Improves Carbon Yield and Structural Properties of Respective Carbon Fibers. Biomacromolecules, 2020, 21, 4326-4335.	5.4	30
11	Recycling of Superbase-Based Ionic Liquid Solvents for the Production of Textile-Grade Regenerated Cellulose Fibers in the Lyocell Process. ACS Sustainable Chemistry and Engineering, 2020, 8, 14217-14227.	6.7	49
12	Limitations of Cellulose Dissolution and Fiber Spinning in the Lyocell Process Using [mTBDH][OAc] and [DBNH][OAc] Solvents. Industrial & Engineering Chemistry Research, 2020, 59, 20211-20220.	3.7	13
13	New insights into the air gap conditioning effects during the dry-jet wet spinning of an ionic liquid-cellulose solution. Cellulose, 2020, 27, 4931-4948.	4.9	13
14	Wide-angle X-ray scattering combined with pair distribution function analysis of pyrolyzed wood. Journal of Applied Crystallography, 2019, 52, 60-71.	4.5	8
15	The Heat Treatment Severity Index: A new metric correlated to the properties of biochars obtained from entrained flow pyrolysis of biomass. Fuel, 2019, 244, 61-68.	6.4	16
16	Biocarbons from microfibrillated cellulose/lignosulfonate precursors: A study of electrical conductivity development during slow pyrolysis. Carbon, 2018, 129, 357-366.	10.3	63
17	Fast pyrolysis and steam gasification of pellets prepared from olive oil mill residues. Energy, 2018, 150, 61-68.	8.8	35
18	Use of lignocellulosic materials and 3D printing for the development of structured monolithic carbon materials. Composites Part B: Engineering, 2018, 149, 206-215.	12.0	20

CHAMSEDDINE GUIZANI

#	Article	IF	CITATIONS
19	Thermal characterization and kinetic analysis of microfibrillated cellulose/lignosulfonate blends. Journal of Analytical and Applied Pyrolysis, 2017, 124, 25-34.	5.5	22
20	New insights on the structural evolution of biomass char upon pyrolysis as revealed by the Raman spectroscopy and elemental analysis. Carbon, 2017, 119, 519-521.	10.3	203
21	Combined NMR structural characterization and thermogravimetric analyses for the assessment of the AAEM effect during lignocellulosic biomass pyrolysis. Energy, 2017, 134, 10-23.	8.8	61
22	Pyrolysis of Olive Pomace: Degradation Kinetics, Gaseous Analysis and Char Characterization. Waste and Biomass Valorization, 2017, 8, 1689-1697.	3.4	35
23	The relationship between mineral contents, particle matter and bottom ash distribution during pellet combustion: molar balance and chemometric analysis. Environmental Science and Pollution Research, 2017, 24, 9927-9939.	5.3	16
24	Utilization of Torrefied Coffee Grounds as Reinforcing Agent To Produce High-Quality Biodegradable PBAT Composites for Food Packaging Applications. ACS Sustainable Chemistry and Engineering, 2017, 5, 1906-1916.	6.7	132
25	Biomass fast pyrolysis in a drop tube reactor for bio oil production: Experiments and modeling. Fuel, 2017, 207, 71-84.	6.4	51
26	Sustainable biodegradable coffee grounds filler and its effect on the hydrophobicity, mechanical and thermal properties of biodegradable PBAT composites. Journal of Applied Polymer Science, 2017, 134, .	2.6	109
27	Controlling the Molecular Weight of Lignosulfonates by an Alkaline Oxidative Treatment at Moderate Temperatures and Atmospheric Pressure: A Size-Exclusion and Reverse-Phase Chromatography Study. International Journal of Molecular Sciences, 2017, 18, 2520.	4.1	9
28	Biomass Chars: The Effects of Pyrolysis Conditions on Their Morphology, Structure, Chemical Properties and Reactivity. Energies, 2017, 10, 796.	3.1	128
29	Combustion characteristics and kinetics of torrefied olive pomace. Energy, 2016, 107, 453-463.	8.8	49
30	Biomass char gasification by H2O, CO2 and their mixture: Evolution of chemical, textural and structural properties of the chars. Energy, 2016, 112, 133-145.	8.8	128
31	The nature of the deposited carbon at methane cracking over a nickel loaded wood-char. Comptes Rendus Chimie, 2016, 19, 423-432.	0.5	21
32	Analysis and comparison of bio-oils obtained by hydrothermal liquefaction and fast pyrolysis of beech wood. Fuel, 2016, 174, 180-188.	6.4	98
33	Influence of temperature and particle size on the single and mixed atmosphere gasification of biomass char with H 2 O and CO 2. Fuel Processing Technology, 2015, 134, 175-188.	7.2	63
34	Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity. Energy, 2015, 88, 703-710.	8.8	119
35	The effects of textural modifications on beech wood-char gasification rate under alternate atmospheres of CO 2 and H 2 O. Fuel Processing Technology, 2015, 138, 687-694.	7.2	8
36	Gasification of woody biomass under high heating rate conditions inÂpure CO2: Experiments and modelling. Biomass and Bioenergy, 2015, 83, 169-182.	5.7	20

#	Article	IF	CITATIONS
37	Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties. Fuel, 2014, 116, 310-320.	6.4	129
38	Pyro-gasification of thin wood-chips in pure CO <inf>2</inf> : Experiments and modelling. , 2014, , .		0
39	The gasification reactivity of high-heating-rate chars in single and mixed atmospheres of H2O and CO2. Fuel, 2013, 108, 812-823.	6.4	137