Baoming Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1269762/publications.pdf

Version: 2024-02-01

40 papers 3,938 citations

331670
21
h-index

302126 39 g-index

42 all docs

42 docs citations

42 times ranked 5928 citing authors

#	Article	IF	CITATIONS
1	Rolling back human pluripotent stem cells to an eight-cell embryo-like stage. Nature, 2022, 605, 315-324.	27.8	87
2	The mTORC1â€eIF4F axis controls paused pluripotency. EMBO Reports, 2022, 23, e53081.	4.5	8
3	Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature, 2022, 604, 723-731.	27.8	81
4	Capture of the newly transcribed RNA interactome using click chemistry. Nature Protocols, 2021, 16, 5193-5219.	12.0	5
5	<scp>mTORC</scp> 1â€ <scp>PGC</scp> 1 axis regulates mitochondrial remodeling during reprogramming. FEBS Journal, 2020, 287, 108-121.	4.7	13
6	JMJD3 acts in tandem with KLF4 to facilitate reprogramming to pluripotency. Nature Communications, 2020, 11, 5061.	12.8	24
7	\hat{l}^2 -Catenin safeguards the ground state of mousepluripotency by strengthening the robustness of the transcriptional apparatus. Science Advances, 2020, 6, eaba1593.	10.3	10
8	Exonuclease combinations reduce noises in 3D genomics technologies. Nucleic Acids Research, 2020, 48, e44-e44.	14.5	6
9	PML2â€mediated threadâ€like nuclear bodies mark late senescence in Hutchinson–Gilford progeria syndrome. Aging Cell, 2020, 19, e13147.	6.7	10
10	Generation of two LRRK2 homozygous knockout human induced pluripotent stem cell lines using CRISPR/Cas9. Stem Cell Research, 2020, 45, 101804.	0.7	3
11	Role of Long Non-coding RNAs in Reprogramming to Induced Pluripotency. Genomics, Proteomics and Bioinformatics, 2020, 18, 16-25.	6.9	10
12	Profiling the long noncoding RNA interaction network in the regulatory elements of target genes by chromatin in situ reverse transcription sequencing. Genome Research, 2019, 29, 1521-1532.	5.5	27
13	Generation of a PARK2 homozygous knockout induced pluripotent stem cell line (GIBHi002-A-1) with two common isoforms abolished. Stem Cell Research, 2019, 41, 101602.	0.7	O
14	Generation of an induced pluripotent stem cell line (GIBHi003-A) from a Parkinson's disease patient with mutant PINK1 (p. I368N). Stem Cell Research, 2019, 41, 101607.	0.7	1
15	Generation of Rybp homozygous knockout murine ES cell line GIBHe001-A-1 by using CRISPR/Cas9 technology. Stem Cell Research, 2019, 41, 101638.	0.7	2
16	Nuclear-cytoplasmic shuttling of class IIa histone deacetylases regulates somatic cell reprogramming. Cell Regeneration, 2019, 8, 21-29.	2.6	13
17	Capturing the interactome of newly transcribed RNA. Nature Methods, 2018, 15, 213-220.	19.0	170
18	NCoR/SMRT co-repressors cooperate with c-MYC to create an epigenetic barrier to somatic cell reprogramming. Nature Cell Biology, 2018, 20, 400-412.	10.3	64

#	Article	IF	CITATIONS
19	A Familial Hypercholesterolemia Human Liver Chimeric Mouse Model Using Induced Pluripotent Stem Cell-derived Hepatocytes. Journal of Visualized Experiments, 2018, , .	0.3	3
20	Boosting ATM activity alleviates aging and extends lifespan in a mouse model of progeria. ELife, 2018, 7,	6.0	54
21	Fumarylacetoacetate Hydrolase Knock-out Rabbit Model for Hereditary Tyrosinemia Type 1. Journal of Biological Chemistry, 2017, 292, 4755-4763.	3.4	15
22	Generation of Human Liver Chimeric Mice with Hepatocytes from Familial Hypercholesterolemia Induced Pluripotent Stem Cells. Stem Cell Reports, 2017, 8, 605-618.	4.8	27
23	Transcriptional Control of Somatic Cell Reprogramming. Trends in Cell Biology, 2016, 26, 272-288.	7.9	35
24	Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming. Nature Cell Biology, 2015, 17, 715-725.	10.3	81
25	The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters. Cell Research, 2015, 25, 80-92.	12.0	160
26	The Hypoxia-inducible Factor Renders Cancer Cells More Sensitive to Vitamin C-induced Toxicity. Journal of Biological Chemistry, 2014, 289, 3339-3351.	3.4	45
27	Transcriptional Pause Release Is a Rate-Limiting Step for Somatic Cell Reprogramming. Cell Stem Cell, 2014, 15, 574-588.	11.1	60
28	Class IIa Histone Deacetylases and Myocyte Enhancer Factor 2 Proteins Regulate the Mesenchymal-to-Epithelial Transition of Somatic Cell Reprogramming. Journal of Biological Chemistry, 2013, 288, 12022-12031.	3.4	11
29	MicroRNAs in somatic cell reprogramming. Current Opinion in Cell Biology, 2013, 25, 208-214.	5.4	43
30	Roles of small molecules in somatic cell reprogramming. Acta Pharmacologica Sinica, 2013, 34, 719-724.	6.1	18
31	The mesenchymal-to-epithelial transition in somatic cell reprogramming. Current Opinion in Genetics and Development, 2012, 22, 423-428.	3.3	62
32	MicroRNA Cluster 302–367 Enhances Somatic Cell Reprogramming by Accelerating a Mesenchymal-to-Epithelial Transition. Journal of Biological Chemistry, 2011, 286, 17359-17364.	3.4	231
33	The Histone Demethylases Jhdm1a/1b Enhance Somatic Cell Reprogramming in a Vitamin-C-Dependent Manner. Cell Stem Cell, 2011, 9, 575-587.	11.1	407
34	Vitamin C Enhances the Generation of Mouse and Human Induced Pluripotent Stem Cells. Cell Stem Cell, 2010, 6, 71-79.	11.1	878
35	A Mesenchymal-to-Epithelial Transition Initiates and Is Required for the Nuclear Reprogramming of Mouse Fibroblasts. Cell Stem Cell, 2010, 7, 51-63.	11.1	1,038
36	PX domain and CD domain play different roles in localization and vacuolation of Sorting Nexin 10. Science Bulletin, 2009, 54, 3965-3971.	1.7	5

BAOMING QIN

#	Article	IF	CITATIONS
37	Sorting Nexin 10 Induces Giant Vacuoles in Mammalian Cells. Journal of Biological Chemistry, 2006, 281, 36891-36896.	3.4	62
38	Identification of EGFR kinase domain mutations among lung cancer patients in China: implication for targeted cancer therapy. Cell Research, 2005, 15, 212-217.	12.0	58
39	Nuclear localization of the phosphatidylserine receptor protein via multiple nuclear localization signals. Experimental Cell Research, 2004, 293, 154-163.	2.6	103
40	Reprogramming mouse embryonic fibroblasts using different systems. Protocol Exchange, 0, , .	0.3	1