Yuan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1269758/publications.pdf

Version: 2024-02-01

275 papers

22,794 citations

9264 74 h-index 139 g-index

283 all docs 283
docs citations

times ranked

283

27297 citing authors

#	Article	IF	CITATIONS
1	Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano, 2011, 5, 6971-6980.	14.6	2,384
2	Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nature Nanotechnology, 2014, 9, 555-562.	31.5	1,312
3	A review of rechargeable batteries for portable electronic devices. InformaÄnÃ-Materiály, 2019, 1, 6-32.	17.3	694
4	Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nature Energy, 2020, 5, 881-890.	39.5	647
5	Lateral Dimension-Dependent Antibacterial Activity of Graphene Oxide Sheets. Langmuir, 2012, 28, 12364-12372.	3.5	498
6	Emergence of fiber supercapacitors. Chemical Society Reviews, 2015, 44, 647-662.	38.1	498
7	Sharper and Faster "Nano Darts―Kill More Bacteria: A Study of Antibacterial Activity of Individually Dispersed Pristine Single-Walled Carbon Nanotube. ACS Nano, 2009, 3, 3891-3902.	14.6	493
8	Analysis of the Genome and Transcriptome of Cryptococcus neoformans var. grubii Reveals Complex RNA Expression and Microevolution Leading to Virulence Attenuation. PLoS Genetics, 2014, 10, e1004261.	3.5	336
9	Toward the Extraction of Single Species of Single-Walled Carbon Nanotubes Using Fluorene-Based Polymers. Nano Letters, 2007, 7, 3013-3017.	9.1	314
10	MXene Materials for Designing Advanced Separation Membranes. Advanced Materials, 2020, 32, e1906697.	21.0	295
11	Ternary Hybrids of Amorphous Nickel Hydroxide–Carbon Nanotubeâ€Conducting Polymer for Supercapacitors with High Energy Density, Excellent Rate Capability, and Long Cycle Life. Advanced Functional Materials, 2015, 25, 1063-1073.	14.9	288
12	High-Purity Separation of Gold Nanoparticle Dimers and Trimers. Journal of the American Chemical Society, 2009, 131, 4218-4219.	13.7	267
13	Allâ€Carbon Nanoarchitectures as Highâ€Performance Separation Membranes with Superior Stability. Advanced Functional Materials, 2015, 25, 7348-7359.	14.9	248
14	Controlled Functionalization of Carbonaceous Fibers for Asymmetric Solidâ€State Microâ€Supercapacitors with High Volumetric Energy Density. Advanced Materials, 2014, 26, 6790-6797.	21.0	243
15	Amorphous Bimetallic Oxide–Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn–Air Batteries. Advanced Materials, 2017, 29, 1701410.	21.0	243
16	Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy and Environmental Science, 2020, 13, 3185-3206.	30.8	225
17	Hollow Fiber Membrane Decorated with Ag/MWNTs: Toward Effective Water Disinfection and Biofouling Control. ACS Nano, 2011, 5, 10033-10040.	14.6	217
18	A Flexible Rechargeable Zinc–Air Battery with Excellent Lowâ€√emperature Adaptability. Angewandte Chemie - International Edition, 2020, 59, 4793-4799.	13.8	217

#	Article	IF	CITATIONS
19	Toward Flexible Zincâ€lon Hybrid Capacitors with Superhigh Energy Density and Ultralong Cycling Life: The Pivotal Role of ZnCl ₂ Saltâ€Based Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 990-997.	13.8	215
20	Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. , 2019, 1, 173-199.		213
21	Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process. Journal of Membrane Science, 2015, 474, 244-253.	8.2	211
22	Incorporation of Single-Wall Carbon Nanotubes into an Organic Polymer Monolithic Stationary Phase for μ-HPLC and Capillary Electrochromatography. Analytical Chemistry, 2005, 77, 1398-1406.	6.5	199
23	Recent Progress of Carbon-Supported Single-Atom Catalysts for Energy Conversion and Storage. Matter, 2020, 3, 1442-1476.	10.0	196
24	Transforming Pristine Carbon Fiber Tows into High Performance Solidâ€State Fiber Supercapacitors. Advanced Materials, 2015, 27, 4895-4901.	21.0	193
25	Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc–Air Batteries. Small, 2018, 14, e1801929.	10.0	192
26	Carbon nanomaterials for advancing separation membranes: A strategic perspective. Carbon, 2016, 109, 694-710.	10.3	189
27	(n,m) Selectivity of Single-Walled Carbon Nanotubes by Different Carbon Precursors on Coâ^'Mo Catalysts. Journal of the American Chemical Society, 2007, 129, 9014-9019.	13.7	184
28	Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Storage Materials, 2020, 25, 585-612.	18.0	181
29	Graphene Materials in Antimicrobial Nanomedicine: Current Status and Future Perspectives. Advanced Healthcare Materials, 2018, 7, e1701406.	7.6	166
30	Intrinsic Activity of Metal Centers in Metal–Nitrogen–Carbon Single-Atom Catalysts for Hydrogen Peroxide Synthesis. Journal of the American Chemical Society, 2020, 142, 21861-21871.	13.7	163
31	Deposition of Silver Nanoparticles on Multiwalled Carbon Nanotubes Grafted with Hyperbranched Poly(amidoamine) and Their Antimicrobial Effects. Journal of Physical Chemistry C, 2008, 112, 18754-18759.	3.1	161
32	1D Supercapacitors for Emerging Electronics: Current Status and Future Directions. Advanced Materials, 2020, 32, e1902387.	21.0	158
33	Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction. Nanoscale, 2013, 5, 3457.	5.6	154
34	Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Nanoscale, 2010, 2, 2744.	5.6	153
35	Using oxidation to increase the electrical conductivity of carbon nanotube electrodes. Carbon, 2009, 47, 1867-1870.	10.3	152
36	Epitaxial Growth of CdS Nanoparticle on Bi ₂ S ₃ Nanowire and Photocatalytic Application of the Heterostructure. Journal of Physical Chemistry C, 2011, 115, 13968-13976.	3.1	149

#	Article	IF	Citations
37	Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nature Communications, 2015, 6, 8212.	12.8	146
38	Sandwich-Architectured Poly(lactic acid)–Graphene Composite Food Packaging Films. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9994-10004.	8.0	146
39	Homogeneous, Heterogeneous, and Biological Catalysts for Electrochemical N ₂ Reduction toward NH ₃ under Ambient Conditions. ACS Catalysis, 2019, 9, 5245-5267.	11.2	145
40	Flexible Zincâ€lon Hybrid Fiber Capacitors with Ultrahigh Energy Density and Long Cycling Life for Wearable Electronics. Small, 2019, 15, e1903817.	10.0	143
41	Population genomics and the evolution of virulence in the fungal pathogen <i>Cryptococcus neoformans</i> . Genome Research, 2017, 27, 1207-1219.	5.5	134
42	Toward Flexible Zincâ€lon Hybrid Capacitors with Superhigh Energy Density and Ultralong Cycling Life: The Pivotal Role of ZnCl ₂ Saltâ€Based Electrolytes. Angewandte Chemie, 2021, 133, 1003-1010.	2.0	130
43	Textile energy storage: Structural design concepts, material selection and future perspectives. Energy Storage Materials, 2016, 3, 123-139.	18.0	128
44	Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. Journal of Membrane Science, 2019, 584, 20-45.	8.2	128
45	Ultrathin nickel boride nanosheets anchored on functionalized carbon nanotubes as bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 764-774.	10.3	123
46	Nickel-grafted TUD-1 mesoporous catalysts for carbon dioxide reforming of methane. Applied Catalysis B: Environmental, 2010, 95, 374-382.	20.2	122
47	All-carbon solid-state yarn supercapacitors from activated carbon and carbon fibers for smart textiles. Materials Horizons, 2015, 2, 598-605.	12.2	120
48	Selective Synthesis of (9,8) Single Walled Carbon Nanotubes on Cobalt Incorporated TUD-1 Catalysts. Journal of the American Chemical Society, 2010, 132, 16747-16749.	13.7	119
49	How carboxylic groups improve the performance of single-walled carbon nanotube electrochemical capacitors?. Energy and Environmental Science, 2011, 4, 4220.	30.8	119
50	Enabling highly efficient, flexible and rechargeable quasi-solid-state zn-air batteries via catalyst engineering and electrolyte functionalization. Energy Storage Materials, 2019, 20, 234-242.	18.0	115
51	The Cryptococcus neoformans Transcriptome at the Site of Human Meningitis. MBio, 2014, 5, e01087-13.	4.1	113
52	Nanoâ€RuO ₂ â€Decorated Holey Graphene Composite Fibers for Microâ€Supercapacitors with Ultrahigh Energy Density. Small, 2018, 14, e1800582.	10.0	113
53	A hierarchically porous nickel–copper phosphide nano-foam for efficient electrochemical splitting of water. Nanoscale, 2017, 9, 4401-4408.	5.6	110
54	Formation of an Endophilin-Ca2+ Channel Complex Is Critical for Clathrin-Mediated Synaptic Vesicle Endocytosis. Cell, 2003, 115, 37-48.	28.9	108

#	Article	IF	Citations
55	Make it stereoscopic: interfacial design for full-temperature adaptive flexible zinc–air batteries. Energy and Environmental Science, 2021, 14, 4926-4935.	30.8	108
56	Catalysts for chirality selective synthesis of single-walled carbon nanotubes. Carbon, 2015, 81, 1-19.	10.3	106
57	Synthesis of uniform diameter single-wall carbon nanotubes in Co-MCM-41: effects of the catalyst prereduction and nanotube growth temperatures. Journal of Catalysis, 2004, 225, 453-465.	6.2	105
58	Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. Journal of Biotechnology, 2010, 150, 57-63.	3.8	105
59	Tracing Genetic Exchange and Biogeography of <i>Cryptococcus neoformans</i> var. <i>grubii</i> at the Global Population Level. Genetics, 2017, 207, 327-346.	2.9	105
60	A graphene-covalent organic framework hybrid for high-performance supercapacitors. Energy Storage Materials, 2020, 32, 448-457.	18.0	103
61	Individually Dispersing Single-Walled Carbon Nanotubes with Novel Neutral pH Water-Soluble Chitosan Derivatives. Journal of Physical Chemistry C, 2008, 112, 7579-7587.	3.1	102
62	Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process. Journal of Membrane Science, 2013, 446, 244-254.	8.2	102
63	Chiral-Selective CoSO ₄ /SiO ₂ Catalyst for (9,8) Single-Walled Carbon Nanotube Growth. ACS Nano, 2013, 7, 614-626.	14.6	101
64	Genome Evolution and Innovation across the Four Major Lineages of Cryptococcus gattii. MBio, 2015, 6, e00868-15.	4.1	101
65	Covalent immobilization of nisin on multi-walled carbon nanotubes: superior antimicrobial and anti-biofilm properties. Nanoscale, 2011, 3, 1874.	5.6	100
66	Hydrogen evolution reaction activity of nickel phosphide is highly sensitive to electrolyte pH. Journal of Materials Chemistry A, 2017, 5, 20390-20397.	10.3	98
67	A review on lithium recovery using electrochemical capturing systems. Desalination, 2021, 500, 114883.	8.2	96
68	Space-confined assembly of all-carbon hybrid fibers for capacitive energy storage: realizing a built-to-order concept for micro-supercapacitors. Energy and Environmental Science, 2016, 9, 611-622.	30.8	94
69	Co–Fe–Cr (oxy)Hydroxides as Efficient Oxygen Evolution Reaction Catalysts. Advanced Energy Materials, 2021, 11, 2003412.	19.5	94
70	Synthesis and Characterization of Highly Ordered Ni-MCM-41 Mesoporous Molecular Sieves. Journal of Physical Chemistry B, 2005, 109, 13237-13246.	2.6	90
71	Differentiation of Gas Molecules Using Flexible and All-Carbon Nanotube Devices. Journal of Physical Chemistry C, 2008, 112, 650-653.	3.1	85
72	Toward efficient and high rate sodium-ion storage: A new insight from dopant-defect interplay in textured carbon anode materials. Energy Storage Materials, 2020, 28, 55-63.	18.0	85

#	Article	IF	CITATIONS
73	Transcriptional dynamics of bile salt export pump during pregnancy: Mechanisms and implications in intrahepatic cholestasis of pregnancy. Hepatology, 2014, 60, 1993-2007.	7.3	82
74	Metatranscriptomic Study of Common and Host-Specific Patterns of Gene Expression between Pines and Their Symbiotic Ectomycorrhizal Fungi in the Genus Suillus. PLoS Genetics, 2016, 12, e1006348.	3.5	82
75	A carbon science perspective in 2018: Current achievements and future challenges. Carbon, 2018, 132, 785-801.	10.3	80
76	One-Dimensional van der Waals Heterostructures as Efficient Metal-Free Oxygen Electrocatalysts. ACS Nano, 2021, 15, 3309-3319.	14.6	79
77	Inhibitory Phosphorylation of GSK-3 by CaMKII Couples Depolarization to Neuronal Survival. Journal of Biological Chemistry, 2010, 285, 41122-41134.	3.4	77
78	Carbon science perspective in 2020: Current research and future challenges. Carbon, 2020, 161, 373-391.	10.3	77
79	Naturally derived honeycomb-like N,S-codoped hierarchical porous carbon with MS ₂ (M =) Tj ETQq1	l 0.78431 5.6	4.rgBT /Ove
80	A high-performance metal-free hydrogen-evolution reaction electrocatalyst from bacterium derived carbon. Journal of Materials Chemistry A, 2015, 3, 7210-7214.	10.3	75
81	Ethanol-Assisted Graphene Oxide-Based Thin Film Formation at Pentane–Water Interface. Langmuir, 2011, 27, 9174-9181.	3.5	73
82	Pressure-Induced Single-Walled Carbon Nanotube (<i>n,m</i>) Selectivity on Coâ^'Mo Catalysts. Journal of Physical Chemistry C, 2007, 111, 14612-14616.	3.1	72
83	Metatranscriptomic analysis of ectomycorrhizal roots reveals genes associated with ⟨scp⟩⟨i⟩⟨ scp⟩⟨i⟩⟨ scp⟩⟨i⟩ scp⟩⟨i⟩⟨ scp⟩⟨i⟩⟨ scp⟩⟨i⟩⟨ scp⟩⟨i⟩ scp⟩ scp⟩ scp⟩ scp⟩ scp⟩ scp⟩ scp⟩ scp	3.8	71
84	2D materials for 1D electrochemical energy storage devices. Energy Storage Materials, 2019, 19, 102-123.	18.0	71
85	Carbon nanotubes for flexible batteries: recent progress and future perspective. National Science Review, 2021, 8, nwaa261.	9.5	71
86	Microevolution of Serial Clinical Isolates of <i>Cryptococcus neoformans</i> var. <i>grubii</i> and <i>C.Âgattii</i> . MBio, 2017, 8, .	4.1	69
87	A Young Drosophila Duplicate Gene Plays Essential Roles in Spermatogenesis by Regulating Several Y-Linked Male Fertility Genes. PLoS Genetics, 2010, 6, e1001255.	3.5	68
88	Bile salt export pump is dysregulated with altered farnesoid X receptor isoform expression in patients with hepatocellular carcinoma. Hepatology, 2013, 57, 1530-1541.	7.3	67
89	Synthesis of uniform diameter single wall carbon nanotubes inBCo-MCM-41: effects of CO pressure and reaction time. Journal of Catalysis, 2004, 226, 351-362.	6.2	66
90	The effect of the cobalt loading on the growth of single wall carbon nanotubes by CO disproportionation on Co-MCM-41 catalysts. Carbon, 2006, 44, 67-78.	10.3	64

#	Article	IF	Citations
91	Toward High-Performance Solution-Processed Carbon Nanotube Network Transistors by Removing Nanotube Bundles. Journal of Physical Chemistry C, 2008, 112, 12089-12091.	3.1	64
92	Mesostructured SBA-16 with excellent hydrothermal, thermal and mechanical stabilities: Modified synthesis and its catalytic application. Journal of Colloid and Interface Science, 2009, 333, 317-323.	9.4	62
93	Comparative analyses of clinical and environmental populations of <i><scp>C</scp>ryptococcus neoformans</i> in <scp>B</scp> otswana. Molecular Ecology, 2015, 24, 3559-3571.	3.9	61
94	Effect of different catalyst supports on the (n,m) selective growth of single-walled carbon nanotube from Co–Mo catalyst. Journal of Materials Science, 2009, 44, 3285-3295.	3.7	60
95	The Mechanism of Single-Walled Carbon Nanotube Growth and Chirality Selection Induced by Carbon Atom and Dimer Addition. ACS Nano, 2010, 4, 939-946.	14.6	59
96	Rechargeable zinc-air batteries with neutral electrolytes: Recent advances, challenges, and prospects. EnergyChem, 2021, 3, 100055.	19.1	59
97	Influence of graphene oxide lateral size on the properties and performances of forward osmosis membrane. Desalination, 2020, 484, 114421.	8.2	58
98	Mechanism of Cobalt Cluster Size Control in Co-MCM-41 during Single-Wall Carbon Nanotubes Synthesis by CO Disproportionation. Journal of Physical Chemistry B, 2004, 108, 15565-15571.	2.6	57
99	Selective Enrichment of (6,5) and (8,3) Single-Walled Carbon Nanotubes via Cosurfactant Extraction from Narrow (<i>n</i> , <i>m</i>) Distribution Samples. Journal of Physical Chemistry B, 2008, 112, 2771-2774.	2.6	57
100	Metal-free bifunctional carbon electrocatalysts derived from zeolitic imidazolate frameworks for efficient water splitting. Materials Chemistry Frontiers, 2018, 2, 102-111.	5.9	57
101	Low-Defect, Purified, Narrowly (n,m)-Dispersed Single-Walled Carbon Nanotubes Grown from Cobalt-Incorporated MCM-41. ACS Nano, 2007, 1, 327-336.	14.6	56
102	Energy Transfer from Photo-Excited Fluorene Polymers to Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 14946-14952.	3.1	54
103	Big to Small: Ultrafine Mo ₂ C Particles Derived from Giant Polyoxomolybdate Clusters for Hydrogen Evolution Reaction. Small, 2019, 15, e1900358.	10.0	53
104	Highly dispersed manganese oxide catalysts grafted on SBA-15: Synthesis, characterization and catalytic application in trans-stilbene epoxidation. Microporous and Mesoporous Materials, 2010, 132, 501-509.	4.4	52
105	Electronic Modulation of Nickel Disulfide toward Efficient Water Electrolysis. Small, 2020, 16, e1905885.	10.0	52
106	A core-sheath holey graphene/graphite composite fiber intercalated with MoS2 nanosheets for high-performance fiber supercapacitors. Electrochimica Acta, 2019, 305, 493-501.	5.2	51
107	Thiocyanate-Modified Silver Nanofoam for Efficient CO ₂ Reduction to CO. ACS Catalysis, 2020, 10, 1444-1453.	11.2	51
108	Axial chlorine coordinated iron-nitrogen-carbon single-atom catalysts for efficient electrochemical CO2 reduction. Chemical Engineering Journal, 2022, 430, 132882.	12.7	51

#	Article	IF	CITATIONS
109	Solutionâ€Processable Carbon Nanotubes for Semiconducting Thinâ€Film Transistor Devices. Advanced Materials, 2010, 22, 1278-1282.	21.0	50
110	Probing the Diameter Limit of Single Walled Carbon Nanotubes in SWCNT: Fullerene Solar Cells. Advanced Energy Materials, 2016, 6, 1600890.	19.5	50
111	The roles of metal-organic frameworks in modulating water permeability of graphene oxide-based carbon membranes. Carbon, 2019, 148, 277-289.	10.3	50
112	Direct synthesis of highly ordered Co-SBA-15 mesoporous materials by the pH-adjusting approach. Microporous and Mesoporous Materials, 2008, 110, 347-354.	4.4	47
113	Octahedral Coordinated Trivalent Cobalt Enriched Multimetal Oxygenâ€Evolution Catalysts. Advanced Energy Materials, 2020, 10, 2002593.	19.5	47
114	Hierarchically porous carbon nanofibers embedded with cobalt nanoparticles for efficient H2O2 detection on multiple sensor platforms. Sensors and Actuators B: Chemical, 2020, 319, 128243.	7.8	46
115	Graphene oxide laminates intercalated with 2D covalent-organic frameworks as a robust nanofiltration membrane. Journal of Materials Chemistry A, 2020, 8, 9713-9725.	10.3	46
116	Pore Curvature Effect on the Stability of Coâ^'MCM-41 and the Formation of Size-Controllable Subnanometer Co Clustersâ€. Journal of Physical Chemistry B, 2005, 109, 2285-2294.	2.6	45
117	A narrow-bandgap benzobisthiadiazole derivative with high near-infrared photothermal conversion efficiency and robust photostability for cancer therapy. Chemical Communications, 2015, 51, 4223-4226.	4.1	45
118	Milk powder-derived bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. Energy Storage Materials, 2018, 11, 134-143.	18.0	45
119	Synthesis of large pore-diameter SBA-15 mesostructured spherical silica and its application in ultra-high-performance liquid chromatography. Journal of Chromatography A, 2009, 1216, 7767-7773.	3.7	44
120	Asymmetric deposition of manganese oxide in single walled carbon nanotube films as electrodes for flexible high frequency response electrochemical capacitors. Electrochimica Acta, 2012, 78, 122-132.	5. 2	44
121	Microbe-derived carbon materials for electrical energy storage and conversion. Journal of Energy Chemistry, 2016, 25, 191-198.	12.9	44
122	Characterization of the Organic Component of Low-Molecular-Weight Chromium-Binding Substance and Its Binding of Chromium. Journal of Nutrition, 2011, 141, 1225-1232.	2.9	43
123	Catalytic activity atlas of ternary Co–Fe–V metal oxides for the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 15951-15961.	10.3	43
124	Drying graphene hydrogel fibers for capacitive energy storage. Carbon, 2020, 164, 100-110.	10.3	43
125	Bacterial physiology is a key modulator of the antibacterial activity of graphene oxide. Nanoscale, 2016, 8, 17181-17189.	5.6	42
126	Low-dose chemotherapy of hepatocellular carcinoma through triggered-release from bilayer-decorated magnetoliposomes. Colloids and Surfaces B: Biointerfaces, 2014, 116, 452-458.	5.0	41

#	Article	IF	Citations
127	Assembly of pi-functionalized quaternary ammonium compounds with graphene hydrogel for efficient water disinfection. Journal of Colloid and Interface Science, 2019, 535, 149-158.	9.4	41
128	The on-demand engineering of metal-doped porous carbon nanofibers as efficient bifunctional oxygen catalysts for high-performance flexible Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 7297-7308.	10.3	41
129	Effect of Co-MCM-41 Conversion to Cobalt Silicate for Catalytic Growth of Single Wall Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 20095-20101.	2.6	40
130	CoSO4/SiO2 catalyst for selective synthesis of (9, 8) single-walled carbon nanotubes: Effect of catalyst calcination. Journal of Catalysis, 2013, 300, 91-101.	6.2	38
131	Estrogen and Estrogen Receptor-α-Mediated Transrepression of Bile Salt Export Pump. Molecular Endocrinology, 2015, 29, 613-626.	3.7	37
132	Antimicrobial graphene materials: the interplay of complex materials characteristics and competing mechanisms. Biomaterials Science, 2018, 6, 766-773.	5.4	37
133	Recent Advances in Carbon Nanotube Utilizations in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2004765.	14.9	37
134	Hierarchical honeycomb graphene aerogels reinforced by carbon nanotubes with multifunctional mechanical and electrical properties. Carbon, 2021, 175, 312-321.	10.3	37
135	Graphene layers on Cu and Ni (111) surfaces in layer controlled graphene growth. RSC Advances, 2013, 3, 3046.	3.6	36
136	Nanocarbon materials in water disinfection: state-of-the-art and future directions. Nanoscale, 2019, 11, 9819-9839.	5.6	35
137	3d Transitionâ€Metalâ€Mediated Columbite Nanocatalysts for Decentralized Electrosynthesis of Hydrogen Peroxide. Small, 2021, 17, e2007249.	10.0	35
138	Activity and stability comparison of immobilized NADH oxidase on multi-walled carbon nanotubes, carbon nanospheres, and single-walled carbon nanotubes. Journal of Molecular Catalysis B: Enzymatic, 2011, 69, 120-126.	1.8	34
139	Multifunctional nitrogen-rich "brick-and-mortar―carbon as high performance supercapacitor electrodes and oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2013, 1, 11061.	10.3	34
140	Next generation multilocus sequence typing (NGMLST) and the analytical software program MLSTEZ enable efficient, cost-effective, high-throughput, multilocus sequencing typing. Fungal Genetics and Biology, 2015, 75, 64-71.	2.1	34
141	Hydrothermal assembly of micro-nano-integrated core-sheath carbon fibers for high-performance all-carbon micro-supercapacitors. Energy Storage Materials, 2017, 9, 221-228.	18.0	34
142	The effect of synthesis solution pH on the physicochemical properties of Co substituted MCM-41. Topics in Catalysis, 2005, 34, 31-40.	2.8	33
143	Monodispersed MCM-41 large particles by modified pseudomorphic transformation: Direct diamine functionalization and application in protein bioseparation. Microporous and Mesoporous Materials, 2009, 122, 114-120.	4.4	33
144	Hybrid ternary rice paper–manganese oxide–carbon nanotube nanocomposites for flexible supercapacitors. Nanoscale, 2013, 5, 11108.	5.6	33

#	Article	IF	Citations
145	Novel Poly(I-lactide)/graphene oxide films with improved mechanical flexibility and antibacterial activity. Journal of Colloid and Interface Science, 2017, 507, 344-352.	9.4	33
146	Atomic carbon adsorption on Ni nanoclusters: a DFT study. Theoretical Chemistry Accounts, 2011, 128, 17-24.	1.4	32
147	"Smart poisoning―of Co/SiO2catalysts by sulfidation for chirality-selective synthesis of (9,8) single-walled carbon nanotubes. Nanoscale, 2016, 8, 17705-17713.	5.6	32
148	2D Material Based Advanced Membranes for Separations in Organic Solvents. Small, 2020, 16, e2003400.	10.0	31
149	Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials. Nanotechnology, 2010, 21, 165103.	2.6	30
150	Mechanistic insights into isoform-dependent and species-specific regulation of bile salt export pump by farnesoid X receptor. Journal of Lipid Research, 2013, 54, 3030-3044.	4.2	30
151	Synergism of Water Shock and a Biocompatible Block Copolymer Potentiates the Antibacterial Activity of Graphene Oxide. Small, 2016, 12, 951-962.	10.0	30
152	Controlling water transport in carbon nanotubes. Nano Today, 2017, 14, 13-15.	11.9	30
153	Tuning crystallization and morphology of zinc oxide with polyvinylpyrrolidone: Formation mechanisms and antimicrobial activity. Journal of Colloid and Interface Science, 2019, 546, 43-52.	9.4	30
154	Synthesis of noble metal-based intermetallic electrocatalysts by space-confined pyrolysis: Recent progress and future perspective. Journal of Energy Chemistry, 2021, 60, 61-74.	12.9	30
155	High Selectivity cum Yield Gel Electrophoresis Separation of Single-Walled Carbon Nanotubes Using a Chemically Selective Polymer Dispersant. Journal of Physical Chemistry C, 2012, 116, 10266-10273.	3.1	29
156	Pressure-retarded membrane distillation for simultaneous hypersaline brine desalination and low-grade heat harvesting. Journal of Membrane Science, 2020, 597, 117765.	8.2	29
157	Zinc–Air Battery-Based Desalination Device. ACS Applied Materials & 200; Interfaces, 2020, 12, 25728-25735.	8.0	29
158	Acetoneâ€Induced Graphene Oxide Film Formation at the Water–Air Interface. Chemistry - an Asian Journal, 2013, 8, 437-443.	3.3	28
159	Non-covalent synthesis of thermo-responsive graphene oxide–perylene bisimides-containing poly(N-isopropylacrylamide) hybrid for organic pigment removal. Journal of Colloid and Interface Science, 2014, 430, 121-128.	9.4	28
160	Exploring the upper limit of single-walled carbon nanotube purity by multiple-cycle aqueous two-phase separation. Nanoscale, 2017, 9, 11640-11646.	5.6	28
161	Foldable and scrollable graphene paper with tuned interlayer spacing as high areal capacity anodes for sodium-ion batteries. Energy Storage Materials, 2021, 41, 395-403.	18.0	28
162	Essential role of the LIM domain in the formation of the PKCÉ>–ENH–N-type Ca2+ channel complex. Cellular Signalling, 2006, 18, 215-224.	3.6	27

#	Article	IF	Citations
163	Urinary chromium loss associated with diabetes is offset by increases in absorption. Journal of Inorganic Biochemistry, 2010, 104, 790-797.	3.5	27
164	Enrichment of (8,4) Singleâ€Walled Carbon Nanotubes Through Coextraction with Heparin. Small, 2010, 6, 110-118.	10.0	27
165	Defective crystalline molybdenum phosphides as bifunctional catalysts for hydrogen evolution and hydrazine oxidation reactions during water splitting. Inorganic Chemistry Frontiers, 2019, 6, 2686-2695.	6.0	27
166	Pressure-retarded membrane distillation for low-grade heat recovery: The critical roles of pressure-induced membrane deformation. Journal of Membrane Science, 2019, 579, 90-101.	8.2	27
167	Ultralow-platinum-loading nanocarbon hybrids for highly sensitive hydrogen peroxide detection. Sensors and Actuators B: Chemical, 2019, 283, 304-311.	7.8	27
168	How Is Cycle Life of Three-Dimensional Zinc Metal Anodes with Carbon Fiber Backbones Affected by Depth of Discharge and Current Density in Zinc–Ion Batteries?. ACS Applied Materials & Depth 2022, 14, 12323-12330.	8.0	27
169	Single-wall carbon nanotube synthesis by CO disproportionation on nickel-incorporated MCM-41. Nanotechnology, 2005, 16, S476-S483.	2.6	26
170	Effect of Centrifugation on the Purity of Single-Walled Carbon Nanotubes from MCM-41 Containing Cobalt. Journal of Physical Chemistry C, 2008, 112, 17567-17575.	3.1	26
171	Sulfur-induced chirality changes in single-walled carbon nanotube synthesis by ethanol chemical vapor deposition on a Co/SiO ₂ catalyst. Journal of Materials Chemistry A, 2015, 3, 3310-3319.	10.3	26
172	Ultrafast hydrothermal assembly of nanocarbon microfibers in near-critical water for 3D microsupercapacitors. Carbon, 2018, 132, 698-708.	10.3	26
173	A novel synthesis route for bimetallic CoCr–MCM-41 catalysts with higher metal loadings. Their application in the high yield, selective synthesis of Single-Wall Carbon Nanotubes. Journal of Catalysis, 2010, 271, 358-369.	6.2	25
174	Recognition of carbon nanotube chirality by phage display. RSC Advances, 2012, 2, 1466-1476.	3.6	25
175	Sulfur doped Co/SiO ₂ catalysts for chirally selective synthesis of single walled carbon nanotubes. Chemical Communications, 2013, 49, 2031-2033.	4.1	25
176	Genotypic diversity and clinical outcome of cryptococcosis in renal transplant recipients in Brazil. Emerging Microbes and Infections, 2019, 8, 119-129.	6.5	25
177	Electrodes and electrocatalysts for electrochemical hydrogen peroxide sensors: a review of design strategies. Nanoscale Horizons, 2022, 7, 463-479.	8.0	25
178	A tctex1-Ca2+ channel complex for selective surface expression of Ca2+ channels in neurons. Nature Neuroscience, 2005, 8, 435-442.	14.8	24
179	Nanotube-supported bioproduction of 4-hydroxy-2-butanone via in situ cofactor regeneration. Applied Microbiology and Biotechnology, 2012, 94, 1233-1241.	3 . 6	24
180	Biofilm-Templated Heteroatom-Doped Carbon–Palladium Nanocomposite Catalyst for Hexavalent Chromium Reduction. ACS Applied Materials & Diterfaces, 2019, 11, 24018-24026.	8.0	24

#	Article	IF	Citations
181	Copper Sulfide Facilitates Hepatobiliary Clearance of Gold Nanoparticles through the Copper-Transporting ATPase ATP7B. ACS Nano, 2019, 13, 5720-5730.	14.6	24
182	The tripartite role of 2D covalent organic frameworks in graphene-based organic solvent nanofiltration membranes. Matter, 2021, 4, 2953-2969.	10.0	24
183	Landscape of gene expression variation of natural isolates of Cryptococcus neoformans in response to biologically relevant stresses. Microbial Genomics, 2020, 6, .	2.0	24
184	Hypoxia-targeted gold nanorods for cancer photothermal therapy. Oncotarget, 2018, 9, 26556-26571.	1.8	24
185	Assemble 2D redox-active covalent organic framework/graphene hybrids as high-performance capacitive materials. Carbon, 2022, 190, 412-421.	10.3	24
186	Effect of different carbon sources on the growth of single-walled carbon nanotube from MCM-41 containing nickel. Carbon, 2007, 45, 2217-2228.	10.3	23
187	Preparation of large particle MCM-41 and investigation on its fluidization behavior and application in single-walled carbon nanotube production in a fluidized-bed reactor. Chemical Engineering Journal, 2008, 142, 331-336.	12.7	23
188	(9,8) Singleâ€Walled Carbon Nanotube Enrichment via Aqueous Twoâ€Phase Separation and Their Thinâ€Film Transistor Applications. Advanced Electronic Materials, 2015, 1, 1500151.	5.1	23
189	Metallicityâ€Dependent Ultrafast Water Transport in Carbon Nanotubes. Small, 2020, 16, e1907575.	10.0	23
190	Core-shell structured graphene aerogels with multifunctional mechanical, thermal and electromechanical properties. Carbon, 2020, 162, 365-374.	10.3	23
191	A Protein Phosphatase 2cÂ-Ca2+ Channel Complex for Dephosphorylation of Neuronal Ca2+ Channels Phosphorylated by Protein Kinase C. Journal of Neuroscience, 2005, 25, 1914-1923.	3.6	22
192	X-ray Absorption Spectroscopic Investigation of Partially Reduced Cobalt Species in Coâ^'MCM-41 Catalysts during Synthesis of Single-Wall Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 16332-16339.	2.6	22
193	Bifunctional catalysts for heterogeneous electro-Fenton processes: a review. Environmental Chemistry Letters, 2022, 20, 3837-3859.	16.2	22
194	Charge Transfer between Metal Clusters and Growing Carbon Structures in Chirality-Controlled Single-Walled Carbon Nanotube Growth. Journal of Physical Chemistry Letters, 2011, 2, 1009-1014.	4.6	21
195	Reactive Sites for Chiral Selective Growth of Single-Walled Carbon Nanotubes: A DFT Study of Ni ₅₅ –C _{<i>n</i>} Complexes. Journal of Physical Chemistry A, 2012, 116, 11709-11717.	2.5	21
196	Selective synthesis of single walled carbon nanotubes on metal (iron, nickel or cobalt) sulfate-based catalysts. Carbon, 2018, 129, 128-136.	10.3	21
197	Dysregulation of bile acids increases the risk for preterm birth in pregnant women. Nature Communications, 2020, 11 , 2111 .	12.8	21
198	Altered gut microbiome in FUT2 loss-of-function mutants in support of personalized medicine for inflammatory bowel diseases. Journal of Genetics and Genomics, 2021, 48, 771-780.	3.9	21

#	Article	IF	CITATIONS
199	Degradation: A critical challenge for M–N–C electrocatalysts. Journal of Energy Chemistry, 2021, 63, 667-674.	12.9	21
200	Characterization of two distinct modes of endophilin in clathrin-mediated endocytosis. Cellular Signalling, 2012, 24, 2043-2050.	3.6	20
201	Bolometric-Effect-Based Wavelength-Selective Photodetectors Using Sorted Single Chirality Carbon Nanotubes. Scientific Reports, 2015, 5, 17883.	3.3	20
202	Construction of Unconventional Hexapod-like Tellurium Nanostructure with Morphology-Dependent Photoluminescence Property. Journal of Physical Chemistry C, 2009, 113, 9502-9508.	3.1	19
203	Increase in the yield of (and selective synthesis of large-diameter) single-walled carbon nanotubes through water-assisted ethanol pyrolysis. Journal of Catalysis, 2014, 309, 419-427.	6.2	19
204	Impact of Sublethal Levels of Single-Wall Carbon Nanotubes on Pyoverdine Production in <i>Pseudomonas aeruginosa</i> and Its Environmental Implications. Environmental Science and Technology Letters, 2015, 2, 105-111.	8.7	19
205	Low-Temperature Electroluminescence Excitation Mapping of Excitons and Trions in Short-Channel Monochiral Carbon Nanotube Devices. ACS Nano, 2020, 14, 2709-2717.	14.6	19
206	In vitro dissolution considerations associated with nano drug delivery systems. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1732.	6.1	19
207	Use of a Chondroitin Sulfate Isomer as an Effective and Removable Dispersant of Singleâ€Walled Carbon Nanotubes. Small, 2011, 7, 2758-2768.	10.0	18
208	Extraction of (9,8) Singleâ€Walled Carbon Nanotubes by Fluoreneâ€Based Polymers. Chemistry - an Asian Journal, 2014, 9, 868-877.	3.3	18
209	E. coli-derived carbon with nitrogen and phosphorus dual functionalities for oxygen reduction reaction. Catalysis Today, 2015, 249, 228-235.	4.4	18
210	Dysregulation of \hat{l} " 4 -3-oxosteroid $5\hat{l}^2$ -reductase in diabetic patients: Implications and mechanisms. Molecular and Cellular Endocrinology, 2018, 470, 127-141.	3.2	18
211	Thermo-osmosis-Coupled Thermally Regenerative Electrochemical Cycle for Efficient Lithium Extraction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6276-6285.	8.0	18
212	Photoconductivity from Carbon Nanotube Transistors Activated by Photosensitive Polymers. Journal of Physical Chemistry C, 2008, 112, 18201-18206.	3.1	17
213	Assessment of (n,m) Selectively Enriched Small Diameter Single-Walled Carbon Nanotubes by Density Differentiation from Cobalt-Incorporated MCM-41 for Macroelectronics. Chemistry of Materials, 2008, 20, 7417-7424.	6.7	17
214	Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices. Nanoscale, 2011, 3, 1845.	5.6	17
215	Transcriptome analysis of different developmental stages of amphioxus reveals dynamic changes of distinct classes of genes during development. Scientific Reports, 2016, 6, 23195.	3.3	17
216	High-energy-density aqueous sodium-ion batteries enabled by chromium hexacycnochromate anodes. Chemical Engineering Journal, 2021, 415, 129003.	12.7	17

#	Article	IF	Citations
217	Application of the Generalized 2D Correlation Analysis to Dynamic Near-Edge X-ray Absorption Spectroscopy Data. Journal of the American Chemical Society, 2005, 127, 1906-1912.	13.7	16
218	Narrow-chirality distributed single-walled carbon nanotube synthesis by remote plasma enhanced ethanol deposition on cobalt incorporated MCM-41 catalyst. Carbon, 2014, 66, 134-143.	10.3	16
219	Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor. Journal of Solid State Chemistry, 2015, 224, 45-51.	2.9	16
220	Cobalt Nanoparticles Confined in Carbon Cages Derived from Zeolitic Imidazolate Frameworks as Efficient Oxygen Electrocatalysts for Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 355-363.	4.7	16
221	Biomass-derived nanocarbon materials for biological applications: challenges and prospects. Journal of Materials Chemistry B, 2020, 8, 9668-9678.	5.8	16
222	Species-Dependent Energy Transfer of Surfactant-Dispersed Semiconducting Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 20061-20065.	3.1	15
223	Nickel hydroxide–carbon nanotube nanocomposites as supercapacitor electrodes: crystallinity dependent performances. Nanotechnology, 2015, 26, 314003.	2.6	15
224	Synthesis and biological evaluations of chalcones, flavones and chromenes as farnesoid x receptor (FXR) antagonists. European Journal of Medicinal Chemistry, 2017, 129, 303-309.	5.5	15
225	Spray drying assisted synthesis of porous carbons from whey powders for capacitive energy storage. Energy, 2018, 147, 308-316.	8.8	15
226	Charge-induced conductance modulation of carbon nanotube field effect transistor memory devices. Carbon, 2009, 47, 3063-3070.	10.3	14
227	Sorting of Single-Walled Carbon Nanotubes Based on Metallicity by Selective Precipitation with Polyvinylpyrrolidone. Journal of Physical Chemistry C, 2011, 115, 5199-5206.	3.1	14
228	RNA-seq Reveals Complicated Transcriptomic Responses to Drought Stress in a Nonmodel Tropic Plant, <i>Bombax ceiba</i> L. Evolutionary Bioinformatics, 2015, 11s1, EBO.S20620.	1.2	14
229	Perylene bisimide-incorporated water-soluble polyurethanes for living cell fluorescence labeling. Polymer, 2016, 82, 172-180.	3.8	14
230	Controlling of Physicochemical Properties of Nickel-Substituted MCM-41 by Adjustment of the Synthesis Solution pH and Tetramethylammonium Silicate Concentration. Journal of Physical Chemistry B, 2006, 110, 5927-5935.	2.6	13
231	Low-molecular-weight chromium-binding substance from chicken liver and American alligator liver. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2006, 144, 423-431.	1.6	13
232	Preparation of spherical large-particle MCM-41 with a broad particle-size distribution by a modified pseudomorphic transformation. Microporous and Mesoporous Materials, 2009, 121, 73-78.	4.4	13
233	Selective Small-Diameter Metallic Single-Walled Carbon Nanotube Removal by Mere Standing with Anthraquinone and Application to a Field-Effect Transistor. Journal of Physical Chemistry C, 2010, 114, 21035-21041.	3.1	13
234	Structure of the SH3 domain of rat endophilin A2. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 243-246.	0.7	12

#	Article	IF	Citations
235	Aggregation-Dependent Photoluminescence Sidebands in Single-Walled Carbon Nanotube. Journal of Physical Chemistry C, 2010, 114, 6704-6711.	3.1	12
236	Carbon composite membranes for thermal-driven membrane processes. Carbon, 2021, 179, 600-626.	10.3	12
237	Statistical design of C10-Co-MCM-41 catalytic template for synthesizing smaller-diameter single-wall carbon nanotubes. Microporous and Mesoporous Materials, 2005, 86, 303-313.	4.4	11
238	Length-dependent performances of sodium deoxycholate-dispersed single-walled carbon nanotube thin-film transistors. Journal of Materials Research, 2013, 28, 1004-1011.	2.6	11
239	Highâ€Performance Partially Printed Hybrid CMOS Inverters Based on Indiumâ€Zincâ€Oxide and Chirality Enriched Carbon Nanotube Thinâ€Film Transistors. Advanced Electronic Materials, 2019, 5, 1900034.	5.1	11
240	Interfacial engineering of graphenic carbon electrodes by antimicrobial polyhexamethylene guanidine hydrochloride for ultrasensitive bacterial detection. Carbon, 2020, 159, 185-194.	10.3	11
241	Viscosity sensitive near-infrared fluorescent probes based on functionalized single-walled carbon nanotubes. Chemical Communications, 2020, 56, 8301-8304.	4.1	11
242	Independent origins of diploidy in Metarhizium. Mycologia, 2016, 108, 1091-1103.	1.9	11
243	Endophilin isoforms have distinct characteristics in interactions with N-type Ca2+ channels and dynamin I. Neuroscience Bulletin, 2012, 28, 483-492.	2.9	10
244	Nanoparticle-supported consecutive reactions catalyzed by alkyl hydroperoxide reductase. Journal of Molecular Catalysis B: Enzymatic, 2012, 76, 9-14.	1.8	10
245	Graphitic carbon from catalytic methane decomposition as efficient conductive additives for zinc-carbon batteries. Carbon, 2022, 192, 84-92.	10.3	10
246	Polycondensation of a Perylene Bisimide Derivative and L-Malic Acid as Water-Soluble Conjugates for Fluorescent Labeling of Live Mammalian Cells. Polymers, 2018, 10, 559.	4.5	9
247	Synthesis of (9,8) single-walled carbon nanotubes on CoSO4/SiO2 catalysts: The effect of Co mass loadings. Carbon, 2020, 169, 288-296.	10.3	9
248	High-performance Fe–N–C electrocatalysts with a "chain mail―protective shield. Nano Materials Science, 2021, 3, 420-428.	8.8	9
249	One-dimensional covalent organic framework—Carbon nanotube heterostructures for efficient capacitive energy storage. Applied Physics Letters, 2021, 119, .	3.3	9
250	Evolution of vertebrate central nervous system is accompanied by novel expression changes of duplicate genes. Journal of Genetics and Genomics, 2011, 38, 577-584.	3.9	8
251	Cellular response of RAW 264.7 to sprayâ€coated multiâ€walled carbon nanotube films with various surfactants. Journal of Biomedical Materials Research - Part A, 2011, 96A, 413-421.	4.0	8
252	Cobalt sulfide catalysts for single-walled carbon nanotube synthesis. Diamond and Related Materials, 2021, 114, 108288.	3.9	8

#	Article	IF	Citations
253	N-doped carbon nanosheets assembled microspheres for more effective capacitive deionization. Separation and Purification Technology, 2021, 276, 119336.	7.9	8
254	Radius of Curvature Effect on the Selective Oxidation of Cyclohexene Over Highly Ordered V-MCM-41. Catalysis Letters, 2007, 117, 25-33.	2.6	7
255	Cardanol-derived cationic surfactants enabling the superior antibacterial activity of single-walled carbon nanotubes. Nanotechnology, 2020, 31, 265603.	2.6	6
256	Differential Feedback Regulation of Δ4-3-Oxosteroid 5β-Reductase Expression by Bile Acids. PLoS ONE, 2017, 12, e0170960.	2.5	6
257	Recent advances in catalysis—selected papers from APCAT 4 (Singapore, 6–8 December 2006). Catalysis Today, 2008, 131, 1.	4.4	5
258	<i>IN SITU</i> FORMATION OF COBALT NANOCLUSTERS IN SOL–GEL SILICA FILMS FOR SINGLE-WALLED CARBON NANOTUBE GROWTH. Nano, 2009, 04, 99-106.	1.0	5
259	Mesostructured molecular solid material $ Co(en)3 $ (Zr2F11H2O) with enhanced photoelectronic effect. Dalton Transactions, 2009, , 6736.	3.3	5
260	Chemometric determination of the length distribution of single walled carbon nanotubes through optical spectroscopy. Analytica Chimica Acta, 2011, 708, 28-36.	5.4	5
261	Mechanical reinforcement of polyethylene using <i>n-</i> alkyl group-functionalized multiwalled carbon nanotubes: Effect of alkyl group carbon chain length and density. Polymer Engineering and Science, 2014, 54, 336-344.	3.1	5
262	Vanishing Hysteresis in Carbon Nanotube Transistors Embedded in Boron Nitride/Polytetrafluoroethylene Heterolayers. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000193.	2.4	5
263	lonic liquid gating of single-walled carbon nanotube devices with ultra-short channel length down to 10 nm. Applied Physics Letters, 2021, 118, .	3.3	5
264	Characterization of a novel plasmid pXZ608 fromCorynebacterium glutamicum. FEMS Microbiology Letters, 2002, 216, 71-75.	1.8	4
265	Efficient, Cost-Effective, High-Throughput, Multilocus Sequencing Typing (MLST) Method, NGMLST, and the Analytical Software Program MLSTEZ. Methods in Molecular Biology, 2017, 1492, 197-202.	0.9	4
266	A novel effect of PDLIM5 in $\hat{l}\pm7$ nicotinic acetylcholine receptor upregulation and surface expression. Cellular and Molecular Life Sciences, 2022, 79, 64.	5.4	4
267	Dualâ€Template Pore Engineering of Whey Powderâ€Derived Carbon as an Efficient Oxygen Reduction Reaction Electrocatalyst for Primary Zincâ€Air Battery. Chemistry - an Asian Journal, 2020, 15, 1881-1889.	3.3	3
268	Capacitive deionization of carbon spheres with a carbon shell derived from the quantum dots of urea-citric acid grown in situ. Diamond and Related Materials, 2021, 116, 108444.	3.9	3
269	Chiral cationic polyamines for chiral microcapsules and siRNA delivery. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5919-5922.	2.2	2
270	Contact spacing controls the on-current for all-carbon field effect transistors. Communications Physics, 2021, 4, .	5.3	2

YUAN CHEN

#	Article	IF	CITATIONS
271	Development and Validation of an LC–MS/MS Method for AC1LPSZG and Pharmacokinetics Application in Rats. Journal of Chromatographic Science, 2021, , .	1.4	1
272	Chirality selective synthesis and enrichment of single walled carbon nanotubes for macroelectronics. , $2011, , .$		0
273	RNA: An Expanding View of Function and Evolution. Evolutionary Bioinformatics, 2015, 11s1, EBO.S38105.	1.2	O
274	(Invited) Space-Confined Assembly of All-Carbon Hybrid Fibers for Capacitive Energy Storage. ECS Meeting Abstracts, 2017 , , .	0.0	0
275	Cobalt Containing Zeolitic Imidazolate Framework Incorporated Electrospun Carbon Nanofibers As Free-Standing Film Sensor for Electrochemical Detection of Hydrogen Peroxide. ECS Meeting Abstracts, 2019, , .	0.0	0