Jean Peccoud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1268577/publications.pdf

Version: 2024-02-01

331670 182427 2,971 70 21 51 citations h-index g-index papers 79 79 79 2626 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Making Security Viral: Shifting Engineering Biology Culture and Publishing. ACS Synthetic Biology, 2022, 11, 522-527.	3.8	6
2	Data sharing policies: share well and you shall be rewarded. Synthetic Biology, 2021, 6, ysab028.	2.2	2
3	Challenges and opportunities for strain verification by whole-genome sequencing. Scientific Reports, 2020, 10, 5873.	3.3	5
4	A stochastic model for error correction of kinetochore-microtubule attachments in budding yeast. PLoS ONE, 2020, 15, e0236293.	2.5	0
5	Rapid, robust plasmid verification by de novo assembly of short sequencing reads. Nucleic Acids Research, 2020, 48, e106-e106.	14.5	12
6	Securing the Exchange of Synthetic Genetic Constructs Using Digital Signatures. ACS Synthetic Biology, 2020, 9, 2656-2664.	3.8	7
7	Synthesizing DNA molecules withÂidentity-based digital signatures toÂpreventÂmalicious tampering and enabling source attribution. Journal of Computer Security, 2020, 28, 437-467.	0.8	4
8	Genetic interactions derived from high-throughput phenotyping of 6589 yeast cell cycle mutants. Npj Systems Biology and Applications, 2020, 6 , 11 .	3.0	3
9	A hybrid stochastic model of the budding yeast cell cycle. Npj Systems Biology and Applications, 2020, 6, 7.	3.0	5
10	Hands-On Introduction to Synthetic Biology for Security Professionals. Trends in Biotechnology, 2019, 37, 1143-1146.	9.3	3
11	Yeast genetic interaction screens in the age of CRISPR/Cas. Current Genetics, 2019, 65, 307-327.	1.7	29
12	CrossPlan: systematic planning of genetic crosses to validate mathematical models. Bioinformatics, 2018, 34, 2237-2244.	4.1	3
13	Cyberbiosecurity: From Naive Trust to Risk Awareness. Trends in Biotechnology, 2018, 36, 4-7.	9.3	79
14	Digital Signatures to Ensure the Authenticity and Integrity of Synthetic DNA Molecules. , $2018,$, .		5
15	The Open Insulin Project: A Case Study for â€~Biohacked' Medicines. Trends in Biotechnology, 2018, 36, 1211-1218.	9.3	19
16	Cyberbiosecurity: An Emerging New Discipline to Help Safeguard the Bioeconomy. Frontiers in Bioengineering and Biotechnology, 2018, 6, 39.	4.1	75
17	CrossPlan., 2018,,.		1
18	GraphSpace: stimulating interdisciplinary collaborations in network biology. Bioinformatics, 2017, 33, 3134-3136.	4.1	23

#	Article	lF	CITATIONS
19	Opportunities to apply manufacturing systems analysis techniques in genetic manufacturing systems. Manufacturing Letters, 2017, 13, 34-38.	2.2	1
20	A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability. PLoS Computational Biology, 2016, 12, e1005230.	3.2	42
21	<i>Synthetic Biology</i> : fostering the cyber-biological revolution. Synthetic Biology, 2016, 1, ysw001.	2.2	22
22	GenoCAD Plant Grammar to Design Plant Expression Vectors for Promoter Analysis. Methods in Molecular Biology, 2016, 1482, 219-232.	0.9	5
23	GenoLIB: a database of biological parts derived from a library of common plasmid features. Nucleic Acids Research, 2015, 43, 4823-4832.	14.5	20
24	Experimental testing of a new integrated model of the budding yeast S <scp>tart</scp> transition. Molecular Biology of the Cell, 2015, 26, 3966-3984.	2.1	25
25	Rule-Based Design of Plant Expression Vectors Using GenoCAD. PLoS ONE, 2015, 10, e0132502.	2.5	12
26	Cloning forever. The Winnower, 2015, , .	0.0	0
27	Adaptive Imaging Cytometry to Estimate Parameters of Gene Networks Models in Systems and Synthetic Biology. PLoS ONE, 2014, 9, e107087.	2.5	12
28	If You Can't Measure It, You Can't Manage It. PLoS Computational Biology, 2014, 10, e1003462.	3.2	7
29	Development of a domain-specific genetic language to design Chlamydomonas reinhardtii expression vectors. Bioinformatics, 2014, 30, 251-257.	4.1	7
30	Rule-Based Design of Synthetic Transcription Factors in Eukaryotes. ACS Synthetic Biology, 2014, 3, 737-744.	3.8	26
31	The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology. Nature Biotechnology, 2014, 32, 545-550.	17. 5	247
32	Measurement and modeling of transcriptional noise in the cell cycle regulatory network. Cell Cycle, 2013, 12, 3392-3407.	2.6	18
33	Sequence verification of synthetic DNA by assembly of sequencing reads. Nucleic Acids Research, 2013, 41, e25-e25.	14.5	13
34	The synthetic futures of vesicular stomatitis virus. Trends in Biotechnology, 2012, 30, 497-498.	9.3	13
35	Gene Synthesis. Methods in Molecular Biology, 2012, , .	0.9	6
36	The PLOS ONE Synthetic Biology Collection: Six Years and Counting. PLoS ONE, 2012, 7, e43231.	2.5	10

#	Article	lF	CITATIONS
37	Genetic design automation: engineering fantasy or scientific renewal?. Trends in Biotechnology, 2012, 30, 120-126.	9.3	47
38	Building Block Synthesis Using the Polymerase Chain Assembly Method. Methods in Molecular Biology, 2012, 852, 3-10.	0.9	8
39	Oscillatory Dynamics of Cell Cycle Proteins in Single Yeast Cells Analyzed by Imaging Cytometry. PLoS ONE, 2011, 6, e26272.	2.5	23
40	Essential information for synthetic DNA sequences. Nature Biotechnology, 2011, 29, 22-22.	17.5	40
41	Strengths and limitations of the federal guidance on synthetic DNA. Nature Biotechnology, 2011, 29, 208-210.	17.5	15
42	A Step-by-Step Introduction to Rule-Based Design of Synthetic Genetic Constructs Using GenoCAD. Methods in Enzymology, 2011, 498, 173-188.	1.0	7
43	Stochastic exit from mitosis in budding yeast. Cell Cycle, 2011, 10, 999-1009.	2.6	26
44	Cyto•IQ: an adaptive cytometer for extracting the noisy dynamics of molecular interactions in live cells. Proceedings of SPIE, 2010, , .	0.8	0
45	GenoCAD for iGEM: a grammatical approach to the design of standard-compliant constructs. Nucleic Acids Research, 2010, 38, 2637-2644.	14.5	65
46	Co-design in synthetic biology: a system-level analysis of the development of an environmental sensing device. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2010, , 385-96.	0.7	3
47	Writing DNA with GenoCADTM. Nucleic Acids Research, 2009, 37, W40-W47.	14.5	134
48	Modeling Structure-Function Relationships in Synthetic DNA Sequences using Attribute Grammars. PLoS Computational Biology, 2009, 5, e1000529.	3.2	28
49	Gene synthesis demystified. Trends in Biotechnology, 2009, 27, 63-72.	9.3	129
50	CO-DESIGN IN SYNTHETIC BIOLOGY:., 2009, , 385-396.		2
51	Genetic design: rising above the sequence. Trends in Biotechnology, 2008, 26, 538-544.	9.3	29
52	Targeted Development of Registries of Biological Parts. PLoS ONE, 2008, 3, e2671.	2.5	63
53	A syntactic model to design and verify synthetic genetic constructs derived from standard biological parts. Bioinformatics, 2007, 23, 2760-2767.	4.1	78
54	Mobius: an integrated discrete-event modeling environment. Bioinformatics, 2007, 23, 3412-3414.	4.1	12

#	Article	IF	CITATIONS
55	Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network. Bioinformatics, 2006, 22, 2782-2789.	4.1	48
56	The Selective Values of Alleles in a Molecular Network Model Are Context Dependent. Genetics, 2004, 166, 1715-1725.	2.9	43
57	PARAMETERIZATION OF A NONLINEAR GENOTYPE TO PHENOTYPE MAP USING MOLECULAR NETWORKS. , 2004, , .		O
58	Estimation of the parameters of a branching process from migrating binomial observations. Advances in Applied Probability, 1998, 30, 948-967.	0.7	21
59	Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6750-6755.	7.1	304
60	Statistical Estimations of PCR Amplification Rates. , 1998, , 111-128.		15
61	ANALYSIS OF THE STABILIZING EFFECT OF ROM ON THE GENETIC NETWORK CONTROLLING COLE1 PLASMID REPLICATION. , 1998, , 65-76.		10
62	Des réseaux de Pétri stochastiques pour les réseaux génétiques Medecine/Sciences, 1998, 14, 991.	0.2	0
63	Probability distribution of the chemical states of a closed system and thermodynamic law of mass action from kinetics: The RNA example. Journal of Chemical Physics, 1997, 107, 2913-2919.	3.0	5
64	Intricate loops: A pragmatic approach. BioEssays, 1995, 17, 183-183.	2.5	0
65	Automating Molecular Biology: A Question of Communication. Bio/technology, 1995, 13, 741-745.	1.5	6
66	Markovian Modeling of Gene-Product Synthesis. Theoretical Population Biology, 1995, 48, 222-234.	1.1	568
67	Aspects aléatoires de la dynamique de la différenciation cellulaire. Medecine/Sciences, 1994, 10, 877.	0.2	1
68	La PCR quantitative : un nouvel outil pour l'analyse médicale Medecine/Sciences, 1993, 9, 1378.	0.2	2
69	Structure of the TCR-Ag-MHC Complex. , 1992, , 17-23.		1
70	Superantigens interact with MHC class II molecules outside of the antigen groove. Cell, 1990, 62, 1115-1121.	28.9	452