Mingxun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1267593/publications.pdf

Version: 2024-02-01

49 papers

20,652 citations

30 h-index 197535 49 g-index

79 all docs

79 docs citations

79 times ranked 24623 citing authors

#	Article	IF	CITATIONS
1	GNPS Dashboard: collaborative exploration of mass spectrometry data in the web browser. Nature Methods, 2022, 19, 134-136.	9.0	35
2	Tandem Mass Spectrometry Molecular Networking as a Powerful and Efficient Tool for Drug Metabolism Studies. Analytical Chemistry, 2022, 94, 1456-1464.	3.2	17
3	foodMASST a mass spectrometry search tool for foods and beverages. Npj Science of Food, 2022, 6, 22.	2.5	9
4	SIMILE enables alignment of tandem mass spectra with statistical significance. Nature Communications, 2022, 13, 2510.	5.8	16
5	TIMSCONVERT: a workflow to convert trapped ion mobility data to open data formats. Bioinformatics, 2022, 38, 4046-4047.	1.8	1
6	Enhancing untargeted metabolomics using metadata-based source annotation. Nature Biotechnology, 2022, 40, 1774-1779.	9.4	25
7	Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data. Nature Biotechnology, 2021, 39, 169-173.	9.4	78
8	Chemically informed analyses of metabolomics mass spectrometry data with Qemistree. Nature Chemical Biology, 2021, 17, 146-151.	3.9	73
9	A Multi-Omics Characterization of the Natural Product Potential of Tropical Filamentous Marine Cyanobacteria. Marine Drugs, 2021, 19, 20.	2.2	19
10	A community resource for paired genomic and metabolomic data mining. Nature Chemical Biology, 2021, 17, 363-368.	3.9	81
11	Non-targeted tandem mass spectrometry enables the visualization of organic matter chemotype shifts in coastal seawater. Chemosphere, 2021, 271, 129450.	4.2	33
12	lon identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nature Communications, 2021, 12, 3832.	5.8	119
13	Quick-start infrastructure for untargeted metabolomics analysis in GNPS. Nature Metabolism, 2021, 3, 880-882.	5.1	11
14	Chemical Gradients of Plant Substrates in an <i>Atta texana</i> Fungus Garden. MSystems, 2021, 6, e0060121.	1.7	2
15	Chemical Proportionality within Molecular Networks. Analytical Chemistry, 2021, 93, 12833-12839.	3.2	22
16	A proteomics sample metadata representation for multiomics integration and big data analysis. Nature Communications, 2021, 12, 5854.	5.8	45
17	NPClassifier: A Deep Neural Network-Based Structural Classification Tool for Natural Products. Journal of Natural Products, 2021, 84, 2795-2807.	1.5	131
18	Mass spectrometry searches using MASST. Nature Biotechnology, 2020, 38, 23-26.	9.4	160

#	Article	IF	CITATIONS
19	Fungal–bacterial interaction selects for quorum sensing mutants with increased production of natural antifungal compounds. Communications Biology, 2020, 3, 670.	2.0	12
20	Feature-based molecular networking in the GNPS analysis environment. Nature Methods, 2020, 17, 905-908.	9.0	650
21	ReDU: a framework to find and reanalyze public mass spectrometry data. Nature Methods, 2020, 17, 901-904.	9.0	79
22	Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nature Protocols, 2020, 15, 1954-1991.	5.5	344
23	Global chemical effects of the microbiome include new bile-acid conjugations. Nature, 2020, 579, 123-129.	13.7	316
24	A Convolutional Neural Network-Based Approach for the Rapid Annotation of Molecularly Diverse Natural Products. Journal of the American Chemical Society, 2020, 142, 4114-4120.	6.6	114
25	Protocol for communityâ€created public MS/MS reference spectra within the Global Natural Products Social Molecular Networking infrastructure. Rapid Communications in Mass Spectrometry, 2020, 34, e8725.	0.7	14
26	MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. Metabolites, 2019, 9, 144.	1.3	245
27	Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37, 852-857.	9.4	11,167
28	Learning representations of microbe–metabolite interactions. Nature Methods, 2019, 16, 1306-1314.	9.0	184
28	Learning representations of microbe–metabolite interactions. Nature Methods, 2019, 16, 1306-1314. The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery. ACS Central Science, 2019, 5, 1824-1833.	9.0 5.3	184 258
	The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products		
29	The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery. ACS Central Science, 2019, 5, 1824-1833. Molecular and Microbial Microenvironments in Chronically Diseased Lungs Associated with Cystic	5.3	258
30	The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery. ACS Central Science, 2019, 5, 1824-1833. Molecular and Microbial Microenvironments in Chronically Diseased Lungs Associated with Cystic Fibrosis. MSystems, 2019, 4, . Initial Development toward Non-Invasive Drug Monitoring via Untargeted Mass Spectrometric	5.3 1.7	258
29 30 31	The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery. ACS Central Science, 2019, 5, 1824-1833. Molecular and Microbial Microenvironments in Chronically Diseased Lungs Associated with Cystic Fibrosis. MSystems, 2019, 4, . Initial Development toward Non-Invasive Drug Monitoring via Untargeted Mass Spectrometric Analysis of Human Skin. Analytical Chemistry, 2019, 91, 8062-8069. Whole Cell MALDI Fingerprinting Is a Robust Tool for Differential Profiling of Two-Component	5.3 1.7 3.2	2582317
29 30 31 32	The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery. ACS Central Science, 2019, 5, 1824-1833. Molecular and Microbial Microenvironments in Chronically Diseased Lungs Associated with Cystic Fibrosis. MSystems, 2019, 4, . Initial Development toward Non-Invasive Drug Monitoring via Untargeted Mass Spectrometric Analysis of Human Skin. Analytical Chemistry, 2019, 91, 8062-8069. Whole Cell MALDI Fingerprinting Is a Robust Tool for Differential Profiling of Two-Component Mammalian Cell Mixtures. Journal of the American Society for Mass Spectrometry, 2019, 30, 344-354. Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product	5.3 1.7 3.2	258 23 17 11
30 31 32 33	The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery. ACS Central Science, 2019, 5, 1824-1833. Molecular and Microbial Microenvironments in Chronically Diseased Lungs Associated with Cystic Fibrosis. MSystems, 2019, 4, . Initial Development toward Non-Invasive Drug Monitoring via Untargeted Mass Spectrometric Analysis of Human Skin. Analytical Chemistry, 2019, 91, 8062-8069. Whole Cell MALDI Fingerprinting Is a Robust Tool for Differential Profiling of Two-Component Mammalian Cell Mixtures. Journal of the American Society for Mass Spectrometry, 2019, 30, 344-354. Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product Bioassay-Guided Fractionation. Journal of Natural Products, 2018, 81, 758-767.	5.3 1.7 3.2 1.2	258 23 17 11 237

#	Article	lF	CITATIONS
37	Discovering and linking public omics data sets using the Omics Discovery Index. Nature Biotechnology, 2017, 35, 406-409.	9.4	159
38	Three-Dimensional Microbiome and Metabolome Cartography of a Diseased Human Lung. Cell Host and Microbe, 2017, 22, 705-716.e4.	5.1	111
39	Significance estimation for large scale metabolomics annotations by spectral matching. Nature Communications, 2017, 8, 1494.	5.8	128
40	The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Research, 2017, 45, D1100-D1106.	6.5	860
41	Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae. ELife, 2017, 6, .	2.8	33
42	SweetNET: A Bioinformatics Workflow for Glycopeptide MS/MS Spectral Analysis. Journal of Proteome Research, 2016, 15, 2826-2840.	1.8	49
43	Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 2016, 34, 828-837.	9.4	2,802
44	Lifestyle chemistries from phones for individual profiling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7645-E7654.	3.3	55
45	SPLASH, a hashed identifier for mass spectra. Nature Biotechnology, 2016, 34, 1099-1101.	9.4	61
46	Molecular Networking and Pattern-Based Genome Mining Improves Discovery of Biosynthetic Gene Clusters and their Products from Salinispora Species. Chemistry and Biology, 2015, 22, 460-471.	6.2	150
47	Automated Genome Mining of Ribosomal Peptide Natural Products. ACS Chemical Biology, 2014, 9, 1545-1551.	1.6	133
48	Spectral Library Generating Function for Assessing Spectrum-Spectrum Match Significance. Journal of Proteome Research, 2013, 12, 3944-3951.	1.8	23
49	Three Dimensional Cartography of Microbiome and Metabolome Data onto Radiological Images of the Human Lung. SSRN Electronic Journal, 0, , .	0.4	O