
Angel Gil-Izquierdo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1266854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. European Journal of Clinical Nutrition, 2003, 57, 235-242.	2.9	388
2	In Vitro Gastrointestinal Digestion Study of Pomegranate Juice Phenolic Compounds, Anthocyanins, and Vitamin C. Journal of Agricultural and Food Chemistry, 2002, 50, 2308-2312.	5.2	284
3	Anthocyanin Metabolism in Rats and Their Distribution to Digestive Area, Kidney, and Brain. Journal of Agricultural and Food Chemistry, 2005, 53, 3902-3908.	5.2	280
4	Characterization of the interglycosidic linkage in di-, tri-, tetra- and pentaglycosylated flavonoids and differentiation of positional isomers by liquid chromatography/electrospray ionization tandem mass spectrometry. Journal of Mass Spectrometry, 2004, 39, 312-321.	1.6	246
5	In Vitro Availability of Flavonoids and Other Phenolics in Orange Juice. Journal of Agricultural and Food Chemistry, 2001, 49, 1035-1041.	5.2	239
6	Bioavailability of phenolic acids. Phytochemistry Reviews, 2008, 7, 301-311.	6.5	213
7	A New Process To Develop a Cocoa Powder with Higher Flavonoid Monomer Content and Enhanced Bioavailability in Healthy Humans. Journal of Agricultural and Food Chemistry, 2007, 55, 3926-3935.	5.2	211
8	Chlorogenic Acid Is Absorbed in Its Intact Form in the Stomach of Rats. Journal of Nutrition, 2006, 136, 1192-1197.	2.9	200
9	Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2007, 1161, 214-223.	3.7	189
10	Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-MSn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties. Marine Drugs, 2012, 10, 2766-2781.	4.6	180
11	An in vitro method to simulate phenolic compound release from the food matrix in the gastrointestinal tract. European Food Research and Technology, 2002, 214, 155-159.	3.3	176
12	Occurrence of urolithins, gut microbiota ellagic acid metabolites and proliferation markers expression response in the human prostate gland upon consumption of walnuts and pomegranate juice. Molecular Nutrition and Food Research, 2010, 54, 311-322.	3.3	174
13	Effect of Processing Techniques at Industrial Scale on Orange Juice Antioxidant and Beneficial Health Compounds. Journal of Agricultural and Food Chemistry, 2002, 50, 5107-5114.	5.2	171
14	In Vitro Gastrointestinal Digestion Study of Broccoli Inflorescence Phenolic Compounds, Glucosinolates, and Vitamin C. Journal of Agricultural and Food Chemistry, 2004, 52, 135-138.	5.2	163
15	A Comparative Study of Flavonoid Compounds, Vitamin C, and Antioxidant Properties of Baby Leaf <i>Brassicaceae</i> Species. Journal of Agricultural and Food Chemistry, 2008, 56, 2330-2340.	5.2	162
16	Blackberry Anthocyanins Are Mainly Recovered from Urine as Methylated and Glucuronidated Conjugates in Humans. Journal of Agricultural and Food Chemistry, 2005, 53, 7721-7727.	5.2	159
17	Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: an H2O2 affair?. Journal of Experimental Botany, 2011, 62, 2841-2854.	4.8	157
18	HPLC-DAD-MS/MS ESI Characterization of Unusual Highly Glycosylated Acylated Flavonoids from Cauliflower (Brassica oleraceaL.var.botrytis) Agroindustrial Byproducts. Journal of Agricultural and Food Chemistry, 2003, 51, 3895-3899.	5.2	146

#	Article	IF	CITATIONS
19	Nanoparticles and Controlled Delivery for Bioactive Compounds: Outlining Challenges for New "Smart-Foods―for Health. Foods, 2018, 7, 72.	4.3	142
20	Betalains in the era of global agri-food science, technology and nutritional health. Phytochemistry Reviews, 2008, 7, 261-280.	6.5	138
21	Oxidized LDL triggers changes in oxidative stress and inflammatory biomarkers in human macrophages. Redox Biology, 2018, 15, 1-11.	9.0	134
22	Comparative study of six pear cultivars in terms of their phenolic and vitamin C contents and antioxidant capacity. Journal of the Science of Food and Agriculture, 2003, 83, 995-1003.	3.5	128
23	Intended or Unintended Doping? A Review of the Presence of Doping Substances in Dietary Supplements Used in Sports. Nutrients, 2017, 9, 1093.	4.1	126
24	Hydroxytyrosol and Potential Uses in Cardiovascular Diseases, Cancer, and AIDS. Frontiers in Nutrition, 2014, 1, 18.	3.7	111
25	Melatonin is synthesised by yeast during alcoholic fermentation in wines. Food Chemistry, 2011, 126, 1608-1613.	8.2	110
26	Further knowledge on barley (Hordeum vulgare L.) leaves O-glycosyl-C-glycosyl flavones by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. Journal of Chromatography A, 2008, 1182, 56-64.	3.7	102
27	Phenolic characterisation of red grapes autochthonous to Andalusia. Food Chemistry, 2009, 112, 949-955.	8.2	101
28	Effect of the Rootstock and Interstock Grafted in Lemon Tree (Citrus limon (L.) Burm.) on the Flavonoid Content of Lemon Juice. Journal of Agricultural and Food Chemistry, 2004, 52, 324-331.	5.2	100
29	Melatonin: A new bioactive compound in wine. Journal of Food Composition and Analysis, 2011, 24, 603-608.	3.9	99
30	In vitro studies to assess the antidiabetic, anti-cholinesterase and antioxidant potential of Spergularia rubra. Food Chemistry, 2011, 129, 454-462.	8.2	98
31	Bauhinia forficata Link authenticity using flavonoids profile: Relation with their biological properties. Food Chemistry, 2012, 134, 894-904.	8.2	97
32	Hesperidin inhibits ovariectomized-induced osteopenia and shows differential effects on bone mass and strength in young and adult intact rats. Journal of Applied Physiology, 2008, 104, 648-654.	2.5	92
33	Acylated anthocyanins in broccoli sprouts. Food Chemistry, 2010, 123, 358-363.	8.2	89
34	Integrated Analysis of COX-2 and iNOS Derived Inflammatory Mediators in LPS-Stimulated RAW Macrophages Pre-Exposed to Echium plantagineum L. Bee Pollen Extract. PLoS ONE, 2013, 8, e59131.	2.5	85
35	Fermented Orange Juice: Source of Higher Carotenoid and Flavanone Contents. Journal of Agricultural and Food Chemistry, 2013, 61, 8773-8782.	5.2	84
36	Volatile profiling of Ficus carica varieties by HS-SPME and GC–IT-MS. Food Chemistry, 2010, 123, 548-557.	8.2	79

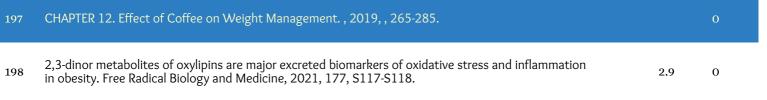
#	Article	IF	CITATIONS
37	Melatonin content of pepper and tomato fruits: Effects of cultivar and solar radiation. Food Chemistry, 2014, 156, 347-352.	8.2	74
38	A ultraâ€pressure liquid chromatography/triple quadrupole tandem mass spectrometry method for the analysis of 13 eicosanoids in human urine and quantitative 24 hour values in healthy volunteers in a controlled constant diet. Rapid Communications in Mass Spectrometry, 2012, 26, 1249-1257.	1.5	72
39	New <i>C</i> -Deoxyhexosyl Flavones and Antioxidant Properties of <i>Passiflora edulis</i> Leaf Extract. Journal of Agricultural and Food Chemistry, 2007, 55, 10187-10193.	5.2	71
40	Soy Isoflavones and Cardiovascular Disease Epidemiological, Clinical and -Omics Perspectives. Current Pharmaceutical Biotechnology, 2012, 13, 624-631.	1.6	71
41	Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism. Bone, 2011, 49, 1108-1116.	2.9	70
42	Inhibition by Chestnut Honey of <i>N</i> -Acyl- <scp>l</scp> -homoserine Lactones and Biofilm Formation in Erwinia carotovora, Yersinia enterocolitica, and Aeromonas hydrophila. Journal of Agricultural and Food Chemistry, 2009, 57, 11186-11193.	5.2	69
43	Evaluation of grape (Vitis vinifera L.) stems from Portuguese varieties as a resource of (poly)phenolic compounds: A comparative study. Food Research International, 2014, 65, 375-384.	6.2	68
44	Optimization of the recovery of high-value compounds from pitaya fruit by-products using microwave-assisted extraction. Food Chemistry, 2017, 230, 463-474.	8.2	67
45	Influence of Industrial Processing on Orange Juice Flavanone Solubility and Transformation to Chalcones under Gastrointestinal Conditions. Journal of Agricultural and Food Chemistry, 2003, 51, 3024-3028.	5.2	65
46	Flavanone metabolism inÂhealthy andÂtumor-bearing rats. Biomedicine and Pharmacotherapy, 2006, 60, 529-535.	5.6	64
47	Phenolic composition profiling of different edible parts and by-products of date palm (Phoenix) Tj ETQq1 1 0.784	4314 rgBT 6.2	/Oyerlock 10
48	Quantification of phytoprostanes – bioactive oxylipins – and phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT-DAD-MS/MS. Food Chemistry, 2017, 229, 1-8.	8.2	63
49	Qualitative and quantitative changes in polyphenol composition and bioactivity of Ribes magellanicum and R. punctatum after in vitro gastrointestinal digestion. Food Chemistry, 2017, 237, 1073-1082.	8.2	63
50	Profiling phlorotannins from Fucus spp. of the Northern Portuguese coastline: Chemical approach by HPLC-DAD-ESI/MS and UPLC-ESI-QTOF/MS. Algal Research, 2018, 29, 113-120.	4.6	63
51	Alcoholic fermentation induces melatonin synthesis in orange juice. Journal of Pineal Research, 2014, 56, 31-38.	7.4	59
52	Potential bioactive phenolics of Macedonian Sideritis species used for medicinal "Mountain Tea― Food Chemistry, 2011, 125, 13-20.	8.2	57
53	Increased bioavailability of hesperetin-7-glucoside compared with hesperidin results in more efficient prevention of bone loss in adult ovariectomised rats. British Journal of Nutrition, 2009, 102, 976-984.	2.3	54
54	Inhibition of α-glucosidase and α-amylase by Spanish extra virgin olive oils: The involvement of bioactive compounds other than oleuropein and hydroxytyrosol. Food Chemistry, 2017, 235, 298-307.	8.2	54

#	Article	IF	CITATIONS
55	Metabolomics and the Diagnosis of Human Diseases -A Guide to the Markers and Pathophysiological Pathways Affected. Current Medicinal Chemistry, 2014, 21, 823-848.	2.4	52
56	New UHPLC–QqQ-MS/MS method for quantitative and qualitative determination of free phytoprostanes in foodstuffs of commercial olive and sunflower oils. Food Chemistry, 2015, 178, 212-220.	8.2	51
57	The effect of storage temperatures on vitamin C and phenolics content of artichoke (Cynara scolymus) Tj ETQq1	1 0.78431 5.6	14 rgBT /Ove
58	Sustained deficit irrigation affects the colour and phytochemical characteristics of pomegranate juice. Journal of the Science of Food and Agriculture, 2013, 93, 1922-1927.	3.5	49
59	Assessment of oxidative stress markers and prostaglandins after chronic training of triathletes. Prostaglandins and Other Lipid Mediators, 2012, 99, 79-86.	1.9	47
60	A new ultra-rapid UHPLC/MS/MS method for assessing glucoraphanin and sulforaphane bioavailability in human urine. Food Chemistry, 2014, 143, 132-138.	8.2	46
61	Approach to the study of <i>C</i> â€glycosyl flavones acylated with aliphatic and aromatic acids from <i>Spergularia rubra</i> by highâ€performance liquid chromatographyâ€photodiode array detection/electrospray ionization multiâ€stage mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 700-712.	1.5	45
62	Ellagic Acid and Derivatives from <i>Cochlospermum angolensis</i> Welw. Extracts: HPLC–DAD–ESI/MS <i>ⁿ</i> Profiling, Quantification and <i>In Vitro</i> Antiâ€depressant, Antiâ€cholinesterase and Antiâ€oxidant Activities. Phytochemical Analysis, 2013, 24, 534-540.	2.4	43
63	In vivo evidence of mitochondrial dysfunction and altered redox homeostasis in a genetic mouse model of propionic acidemia: Implications for the pathophysiology of this disorder. Free Radical Biology and Medicine, 2016, 96, 1-12.	2.9	42
64	Phlorotannin extracts from Fucales: Marine polyphenols as bioregulators engaged in inflammation-related mediators and enzymes. Algal Research, 2017, 28, 1-8.	4.6	41
65	Nonenzymatic α-Linolenic Acid Derivatives from the Sea: Macroalgae as Novel Sources of Phytoprostanes. Journal of Agricultural and Food Chemistry, 2015, 63, 6466-6474.	5.2	40
66	Identification and quantitation of flavonols in rowanberry (Sorbus aucuparia L.) juice. European Food Research and Technology, 2001, 213, 12-17.	3.3	39
67	The intake of broccoli sprouts modulates the inflammatory and vascular prostanoids but not the oxidative stress-related isoprostanes in healthy humans. Food Chemistry, 2015, 173, 1187-1194.	8.2	39
68	Gender differences in plasma and urine metabolites from Sprague–Dawley rats after oral administration of normal and high doses of hydroxytyrosol, hydroxytyrosol acetate, and DOPAC. European Journal of Nutrition, 2017, 56, 215-224.	4.6	39
69	Phytochemical investigations and biological potential screening with cellular and non-cellular models of globe amaranth (Gomphrena globosaL.) inflorescences. Food Chemistry, 2012, 135, 756-763.	8.2	38
70	Further Knowledge on the Phenolic Profile of <i>Colocasia esculenta</i> (L.) Shott. Journal of Agricultural and Food Chemistry, 2012, 60, 7005-7015.	5.2	36
71	Assessment of the melatonin production in pomegranate wines. LWT - Food Science and Technology, 2012, 47, 13-18.	5.2	36
72	Phytoprostanes in almonds: identification, quantification, and impact of cultivar and type of cultivation. RSC Advances, 2015, 5, 51233-51241.	3.6	35

#	Article	IF	CITATIONS
73	Influence of modified atmosphere packaging on quality, vitamin C and phenolic content of artichokes (Cynara scolymus L.). European Food Research and Technology, 2002, 215, 21-27.	3.3	34
74	Box–Behnken factorial design to obtain a phenolic-rich extract from the aerial parts of Chelidonium majus L. Talanta, 2014, 130, 128-136.	5.5	34
75	The phytoprostane content in green table olives is influenced by Spanish-style processing and regulated deficit irrigation. LWT - Food Science and Technology, 2015, 64, 997-1003.	5.2	34
76	Potential of <scp> <i>Physalis peruviana </i> </scp> calyces as a lowâ€cost valuable resource of phytoprostanes and phenolic compounds. Journal of the Science of Food and Agriculture, 2019, 99, 2194-2204.	3.5	34
77	<i>Rumex induratus</i> Leaves:  Interesting Dietary Source of Potential Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2006, 54, 5782-5789.	5.2	33
78	Influence of taro (Colocasia esculenta L. Shott) growth conditions on the phenolic composition and biological properties. Food Chemistry, 2013, 141, 3480-3485.	8.2	33
79	Dihomo-isoprostanes—nonenzymatic metabolites of AdA—are higher in epileptic patients compared to healthy individuals by a new ultrahigh pressure liquid chromatography–triple quadrupole–tandem mass spectrometry method. Free Radical Biology and Medicine, 2015, 79, 154-163.	2.9	33
80	Effect of thermal processing on the profile of bioactive compounds and antioxidant capacity of fermented orange juice. International Journal of Food Sciences and Nutrition, 2016, 67, 779-788.	2.8	33
81	<i>Aronia</i> – <i>citrus</i> juice (polyphenol-rich juice) intake and elite triathlon training: a lipidomic approach using representative oxylipins in urine. Food and Function, 2018, 9, 463-475.	4.6	33
82	Phenolic, oxylipin and fatty acid profiles of the Chilean hazelnut (Gevuina avellana): Antioxidant activity and inhibition of pro-inflammatory and metabolic syndrome-associated enzymes. Food Chemistry, 2019, 298, 125026.	8.2	33
83	Impact of packaging atmosphere, storage and processing conditions on the generation of phytoprostanes as quality processing compounds in almond kernels. Food Chemistry, 2016, 211, 869-875.	8.2	32
84	Pharmacokinetics and bioavailability of hydroxytyrosol are dependent on the food matrix in humans. European Journal of Nutrition, 2021, 60, 905-915.	3.9	32
85	Effects of water deficit during maturation on amino acids and jujube fruit eating quality. Macedonian Journal of Chemistry and Chemical Engineering, 2014, 33, 105.	0.6	31
86	Fast determination of bioactive compounds from Lycopersicon esculentum Mill. leaves. Food Chemistry, 2012, 135, 748-755.	8.2	30
87	Phytoprostanes. Lipid Technology, 2015, 27, 127-130.	0.3	29
88	Comparative Study of the Phytoprostane and Phytofuran Content of <i>indica</i> and <i>japonica</i> Rice (<i>Oryza sativa</i> L.) Flours. Journal of Agricultural and Food Chemistry, 2017, 65, 8938-8947.	5.2	29
89	HPLC-DAD-ESI/MS n profiling of phenolic compounds from Lathyrus cicera L. seeds. Food Chemistry, 2017, 214, 678-685.	8.2	29
90	Diffuse light affects the contents of vitamin C, phenolic compounds and free amino acids in lettuce plants. Food Chemistry, 2019, 272, 227-234.	8.2	29

#	Article	IF	CITATIONS
91	Non-targeted metabolomic approach reveals urinary metabolites linked to steroid biosynthesis pathway after ingestion of citrus juice. Food Chemistry, 2013, 136, 938-946.	8.2	28
92	Effect of Water Deficit and Domestic Storage on the Procyanidin Profile, Size, and Aggregation Process in Pear-Jujube (<i>Z. jujuba)</i> Fruits. Journal of Agricultural and Food Chemistry, 2013, 61, 6187-6197.	5.2	28
93	Sorting out the phytoprostane and phytofuran profile in vegetable oils. Food Research International, 2018, 107, 619-628.	6.2	28
94	Water Deficit during Pit Hardening Enhances Phytoprostanes Content, a Plant Biomarker of Oxidative Stress, in Extra Virgin Olive Oil. Journal of Agricultural and Food Chemistry, 2015, 63, 3784-3792.	5.2	27
95	Leaves and stem bark from Allophylus africanus P. Beauv.: An approach to anti-inflammatory properties and characterization of their flavonoid profile. Food and Chemical Toxicology, 2018, 118, 430-438.	3.6	27
96	Update on oxidative stress and inflammation in pregnant women, unborn children (nasciturus), and newborns – Nutritional and dietary effects. Free Radical Biology and Medicine, 2019, 142, 38-51.	2.9	27
97	Effects of a citrus based juice on biomarkers of oxidative stress in metabolic syndrome patients. Journal of Functional Foods, 2013, 5, 1031-1038.	3.4	26
98	<i>Piper betle</i> Leaves: Profiling Phenolic Compounds by HPLC/DAD–ESI/MS <i>ⁿ</i> and Antiâ€cholinesterase Activity. Phytochemical Analysis, 2014, 25, 453-460.	2.4	26
99	Effect of elite physical exercise by triathletes on seven catabolites of DNA oxidation. Free Radical Research, 2015, 49, 973-983.	3.3	26
100	Dependency of Phytoprostane Fingerprints of Must and Wine on Viticulture and Enological Processes. Journal of Agricultural and Food Chemistry, 2015, 63, 9022-9028.	5.2	26
101	Rootstock effect on serotonin and nutritional quality of tomatoes produced under low temperature and light conditions. Journal of Food Composition and Analysis, 2016, 46, 50-59.	3.9	26
102	Structural/Functional Matches and Divergences of Phytoprostanes and Phytofurans with Bioactive Human Oxylipins. Antioxidants, 2018, 7, 165.	5.1	26
103	Edible seaweeds' phlorotannins in allergy: A natural multi-target approach. Food Chemistry, 2018, 265, 233-241.	8.2	26
104	In vitro multifunctionality of phlorotannin extracts from edible Fucus species on targets underpinning neurodegeneration. Food Chemistry, 2020, 333, 127456.	8.2	26
105	Physical activity increases the bioavailability of flavanones after dietary aronia-citrus juice intake in triathletes. Food Chemistry, 2012, 135, 2133-2137.	8.2	25
106	Medicinal species as MTDLs: Turnera diffusa Willd. Ex Schult inhibits CNS enzymes and delays glutamate excitotoxicity in SH-SY5Y cells via oxidative damage. Food and Chemical Toxicology, 2017, 106, 466-476.	3.6	25
107	Orally Administered Isoflavones Are Present as Glucuronides in the Human Prostate. Nutrition and Cancer, 2008, 60, 461-468.	2.0	24
108	Impact of processing conditions on the phytoprostanes profile of three types of nut kernels. Free Radical Research, 2017, 51, 141-147.	3.3	24

#	Article	IF	CITATIONS
109	Comparing the phenolic profile of Pilocarpus pennatifolius Lem. by HPLC–DAD–ESI/MS n with respect to authentication and enzyme inhibition potential. Industrial Crops and Products, 2015, 77, 391-401.	5.2	23
110	Phenolic Profiling and Biological Potential of Ficus curtipes Corner Leaves and Stem Bark: 5-Lipoxygenase Inhibition and Interference with NO Levels in LPS-Stimulated RAW 264.7 Macrophages. Biomolecules, 2019, 9, 400.	4.0	23
111	Effect of simulated gastrointestinal digestion on polyphenols and bioactivity of the native Chilean red strawberry (Fragaria chiloensis ssp. chiloensis f. patagonica). Food Research International, 2019, 123, 106-114.	6.2	23
112	Statement of Foliar Fertilization Impact on Yield, Composition, and Oxidative Biomarkers in Rice. Journal of Agricultural and Food Chemistry, 2019, 67, 597-605.	5.2	23
113	Effect of Fermentation and Subsequent Pasteurization Processes on Amino Acids Composition of Orange Juice. Plant Foods for Human Nutrition, 2015, 70, 153-159.	3.2	22
114	Highâ€performance liquid chromatographyâ€diode array detectionâ€electrospray ionization multiâ€stage mass spectrometric screening of an insect/plant system: the case of <i>Spodoptera littoralis</i> / <i>Lycopersicon esculentum</i> phenolics and alkaloids. Rapid Communications in Mass Spectrometry, 2011, 25, 1972-1980.	1.5	21
115	Discovery of human urinary biomarkers of aroniaâ€citrus juice intake by <scp>HPLC</scp> â€qâ€ <scp>TOF</scp> â€based metabolomic approach. Electrophoresis, 2014, 35, 1599-1606.	2.4	21
116	HPLC-DAD-ESI/MSn analysis of phenolic compounds for quality control of Grindelia robusta Nutt. and bioactivities. Journal of Pharmaceutical and Biomedical Analysis, 2014, 94, 163-172.	2.8	21
117	Evaluation of the Probiotic Properties and the Capacity to Form Biofilms of Various Lactobacillus Strains. Microorganisms, 2020, 8, 1053.	3.6	21
118	Bioavailable phytoprostanes and phytofurans from <i>Gracilaria longissima</i> have anti-inflammatory effects in endothelial cells. Food and Function, 2020, 11, 5166-5178.	4.6	21
119	Comprehensive characterization and antioxidant activities of the main biflavonoids of Garcinia madruno : A novel tropical species for developing functional products. Journal of Functional Foods, 2016, 27, 503-516.	3.4	20
120	In vitro multimodal-effect of Trichilia catigua A. Juss. (Meliaceae) bark aqueous extract in CNS targets. Journal of Ethnopharmacology, 2018, 211, 247-255.	4.1	20
121	Comparative study of different cocoa (Theobroma cacao L.) clones in terms of their phytoprostanes and phytofurans contents. Food Chemistry, 2019, 280, 231-239.	8.2	20
122	Phytoprostanes and Phytofurans—Oxidative Stress and Bioactive Compounds—in Almonds are Affected by Deficit Irrigation in Almond Trees. Journal of Agricultural and Food Chemistry, 2020, 68, 7214-7225.	5.2	20
123	Effect of the season on the free phytoprostane content in Cornicabra extra virgin olive oil from deficitâ€irrigated olive trees. Journal of the Science of Food and Agriculture, 2016, 96, 1585-1592.	3.5	19
124	Safety Evaluation of an Oak-Flavored Milk Powder Containing Ellagitannins upon Oral Administration in the Rat. Journal of Agricultural and Food Chemistry, 2008, 56, 2857-2865.	5.2	18
125	The effects of the intake of plant foods on the human metabolome. TrAC - Trends in Analytical Chemistry, 2013, 52, 88-99.	11.4	18


126 Impact of Salicylic Acid Content and Growing Environment on Phytoprostane and Phytofuran (Stress) Tj ETQq0 0 0.5gBT /Overlock 10 Tf

#	Article	IF	CITATIONS
127	Phenolic compounds from Jacaranda caroba (Vell.) A. DC.: Approaches to neurodegenerative disorders. Food and Chemical Toxicology, 2013, 57, 91-98.	3.6	17
128	In vitro studies of α-glucosidase inhibitors and antiradical constituents of Glandora diffusa (Lag.) D.C. Thomas infusion. Food Chemistry, 2013, 136, 1390-1398.	8.2	17
129	The Value of Legume Foods as a Dietary Source of Phytoprostanes and Phytofurans Is Dependent on Species, Variety, and Growing Conditions. European Journal of Lipid Science and Technology, 2019, 121, 1800484.	1.5	17
130	HPLC-DAD-ESI/MSn phenolic profile and in vitro biological potential of Centaurium erythraea Rafn aqueous extract. Food Chemistry, 2019, 278, 424-433.	8.2	17
131	Influence of the Extraction Method on the Yield of Flavonoids and Phenolics from Sideritis spp. (Pirin) Tj ETQq1 1	0.784314	rgBT /Overld
132	Accumulation of primary and secondary metabolites in edible jackfruit seed tissues and scavenging of reactive nitrogen species. Food Chemistry, 2017, 233, 85-95.	8.2	16
133	Anti-inflammatory properties of the stem bark from the herbal drug Vitex peduncularis Wall. ex Schauer and characterization of its polyphenolic profile. Food and Chemical Toxicology, 2017, 106, 8-16.	3.6	16
134	Melatonin and hydroxytyrosol protect against oxidative stress related to the central nervous system after the ingestion of three types of wine by healthy volunteers. Food and Function, 2017, 8, 64-74.	4.6	16
135	Valorization Strategy of Banana Passion Fruit Shell Wastes: An Innovative Source of Phytoprostanes and Phenolic Compounds and Their Potential Use in Pharmaceutical and Cosmetic Industries. Journal of Food and Nutrition Research (Newark, Del), 2017, 5, 801-808.	0.3	16
136	Effect of different levels of CO2 on the antioxidant content and the polyphenol oxidase activity of â€~Rocha' pears during cold storage. Journal of the Science of Food and Agriculture, 2006, 86, 509-517.	3.5	15
137	HPLCâ€PADâ€atmospheric pressure chemical ionizationâ€MS metabolite profiling of cytotoxic carotenoids from the echinoderm <i>Marthasterias glacialis</i> (spiny seaâ€star). Journal of Separation Science, 2010, 33, 2250-2257.	2.5	15
138	Structural characterization of phenolics and betacyanins in <i>Gomphrena globosa</i> by highâ€performance liquid chromatographyâ€diode array detection/electrospray ionization multiâ€stage mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 3441-3446.	1.5	15
139	Iron deficiency enhances bioactive phenolics in lemon juice. Journal of the Science of Food and Agriculture, 2011, 91, n/a-n/a.	3.5	15
140	Assessing Jasminum grandiflorum L. authenticity by HPLC-DAD-ESI/MSn and effects on physiological enzymes and oxidative species. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88, 157-161.	2.8	15
141	Relationship between the Ingestion of a Polyphenol-Rich Drink, Hepcidin Hormone, and Long-Term Training. Molecules, 2016, 21, 1333.	3.8	15
142	Effect of the dietary intake of melatonin- and hydroxytyrosol-rich wines by healthy female volunteers on the systemic lipidomic-related oxylipins. Food and Function, 2017, 8, 3745-3757.	4.6	15
143	Pennyroyal and gastrointestinal cells: multi-target protection of phenolic compounds against t-BHP-induced toxicity. RSC Advances, 2015, 5, 41576-41584.	3.6	14
144	Melatonin and hydroxytyrosol-rich wines influence the generation of DNA oxidation catabolites linked to mutagenesis after the ingestion of three types of wine by healthy volunteers. Food and Function, 2016, 7, 4781-4796.	4.6	14

#	Article	IF	CITATIONS
145	Snapshot situation of oxidative degradation of the nervous system, kidney, and adrenal glands biomarkers-neuroprostane and dihomo-isoprostanes-urinary biomarkers from infancy to elderly adults. Redox Biology, 2017, 11, 586-591.	9.0	14
146	Current Status of Legislation on Dietary Products for Sportspeople in a European Framework. Nutrients, 2017, 9, 1225.	4.1	14
147	Chemical findings and in vitro biological studies to uphold the use of Ficus exasperata Vahl leaf and stem bark. Food and Chemical Toxicology, 2018, 112, 134-144.	3.6	14
148	Effects of Deficit Irrigation, Rootstock, and Roasting on the Contents of Fatty Acids, Phytoprostanes, and Phytofurans in Pistachio Kernels. Journal of Agricultural and Food Chemistry, 2020, 68, 8915-8924.	5.2	14
149	Oxylipin regulation by phenolic compounds from coffee beverage: Positive outcomes from a randomized controlled trial in healthy adults and macrophage derived foam cells. Free Radical Biology and Medicine, 2020, 160, 604-617.	2.9	14
150	DNA catabolites in triathletes: effects of supplementation with an aronia–citrus juice (polyphenols-rich juice). Food and Function, 2016, 7, 2084-2093.	4.6	13
151	Assessment of oxidative stress biomarkers – neuroprostanes and dihomo-isoprostanes – in the urine of elite triathletes after two weeks of moderate-altitude training. Free Radical Research, 2016, 50, 485-494.	3.3	13
152	Activation of caspase-3 in gastric adenocarcinoma AGS cells by Xylopia aethiopica (Dunal) A. Rich. fruit and characterization of its phenolic fingerprint by HPLC-DAD-ESI(Ion Trap)-MSn and UPLC-ESI-QTOF-MS2. Food Research International, 2021, 141, 110121.	6.2	13
153	Dietary Burden of Phenolics per Serving of "Mountain Tea―(<i>Sideritis</i>) from Macedonia and Correlation to Antioxidant Activity. Natural Product Communications, 2011, 6, 1934578X1100600.	0.5	12
154	Lipidomic approach in young adult triathletes: effect of supplementation with a polyphenols-rich juice on neuroprostane and F ₂ -dihomo-isoprostane markers. Food and Function, 2016, 7, 4343-4355.	4.6	12
155	Physiological linkage of gender, bioavailable hydroxytyrosol derivatives, and their metabolites with systemic catecholamine metabolism. Food and Function, 2017, 8, 4570-4581.	4.6	12
156	Effect of coffee and cocoa-based confectionery containing coffee on markers of cardiometabolic health: results from the pocket-4-life project. European Journal of Nutrition, 2021, 60, 1453-1463.	3.9	12
157	A sustainable approach by using microalgae to minimize the eutrophication process of Mar Menor lagoon. Science of the Total Environment, 2021, 758, 143613.	8.0	12
158	Recycled Wastewater and Reverse Osmosis Brine Use for Halophytes Irrigation: Differences in Physiological, Nutritional and Hormonal Responses of Crithmum maritimum and Atriplex halimus Plants. Agronomy, 2021, 11, 627.	3.0	12
159	Hydration and chemical ingredients in sport drinks: food safety in the European context. Nutricion Hospitalaria, 2015, 31, 1889-99.	0.3	12
160	The chemical composition on fingerprint of Glandora diffusa and its biological properties. Arabian Journal of Chemistry, 2017, 10, 583-595.	4.9	11
161	Polyphenolic profile and antioxidant activity of meristem and leaves from "chagual―(Puya chilensis) Tj ETQq1	1 0.7843 6.2	314 rgBT /0
162	Potential applications of lipid peroxidation products – F4-neuroprostanes, F3-neuroprostanesn-6 DPA, F2-dihomo-isoprostanes and F2-isoprostanes ―in the evaluation of the allograft function in renal transplantation. Free Radical Biology and Medicine, 2017, 104, 178-184.	2.9	10

#	Article	IF	CITATIONS
163	Evaluation of <i>Phoenix dactylifera</i> Edible Parts and Byproducts as Sources of Phytoprostanes and Phytofurans. Journal of Agricultural and Food Chemistry, 2020, 68, 8942-8950.	5.2	10
164	Optimization of Free Phytoprostane and Phytofuran Production by Enzymatic Hydrolysis of Pea Extracts Using Esterases. Journal of Agricultural and Food Chemistry, 2020, 68, 3445-3455.	5.2	10
165	Valorisation of kitul, an overlooked food plant: Phenolic profiling of fruits and inflorescences and assessment of their effects on diabetes-related targets. Food Chemistry, 2021, 342, 128323.	8.2	10
166	Phytoprostanes, phytofurans, tocopherols, tocotrienols, carotenoids and free amino acids and biological potential of sea buckthorn juices. Journal of the Science of Food and Agriculture, 2022, 102, 185-197.	3.5	10
167	Metabolites involved in cellular communication among human cumulus-oocyte-complex and sperm during in vitro fertilization. Reproductive Biology and Endocrinology, 2015, 13, 123.	3.3	9
168	Targeted Lipidomics Profiling Reveals the Generation of Hydroxytyrosol-Fatty Acids in Hydroxytyrosol-Fortified Oily Matrices: New Analytical Methodology and Cytotoxicity Evaluation. Journal of Agricultural and Food Chemistry, 2020, 68, 7789-7799.	5.2	9
169	Phytoprostanes and phytofurans modulate COX-2-linked inflammation markers in LPS-stimulated THP-1 monocytes by lipidomics workflow. Free Radical Biology and Medicine, 2021, 167, 335-347.	2.9	9
170	Bioavailability and metabolism of phenolic compounds and glucosinolates. , 2009, , 194-229.		7
171	Urinary oxylipin signature as biomarkers to monitor the allograft function during the first six months post-renal transplantation. Free Radical Biology and Medicine, 2020, 146, 340-349.	2.9	7
172	Bioactive plant oxylipins-based lipidomics in eighty worldwide commercial dark chocolates: Effect of cocoa and fatty acid composition on their dietary burden. Microchemical Journal, 2020, 157, 105083.	4.5	7
173	Cassia sieberiana DC. leaves modulate LPS-induced inflammatory response in THP-1Âcells and inhibit eicosanoid-metabolizing enzymes. Journal of Ethnopharmacology, 2021, 269, 113746.	4.1	7
174	Alpha-linolenic acid, phytoprostanes and phytofurans in plant, algae and food. Advances in Botanical Research, 2022, 101, 437-468.	1.1	7
175	A New Iced Tea Base Herbal Beverage with Spergularia rubra Extract: Metabolic Profile Stability and In Vitro Enzyme Inhibition. Journal of Agricultural and Food Chemistry, 2013, 61, 8650-8656.	5.2	6
176	How does water stress affect the low molecular weight phenolics of hydroSOStainable almonds?. Food Chemistry, 2021, 339, 127756.	8.2	5
177	Effect of Coffee and Cocoa-Based Confectionery Containing Coffee on Markers of DNA Damage and Lipid Peroxidation Products: Results from a Human Intervention Study. Nutrients, 2021, 13, 2399.	4.1	5
178	Analysis of health claims regarding creatine monohydrate present in commercial communications for a sample of European sports foods supplements. Public Health Nutrition, 2021, 24, 632-640.	2.2	5
179	HPLC-DAD-ESI/MSn and UHPLC-ESI/QTOF/MSn characterization of polyphenols in the leaves of Neocarya macrophylla (Sabine) Prance ex F. White and cytotoxicity to gastric carcinoma cells. Food Research International, 2022, 155, 111082.	6.2	5
180	Antiepileptic drugs affect lipid oxidative markers- neuroprostanes and F2-dihomo-isoprostanes- in patients with epilepsy: differences among first-, second-, and third-generation drugs by UHPLC-QqQ-MS/MS. RSC Advances, 2016, 6, 82969-82976.	3.6	4

#	Article	IF	CITATIONS
181	Fatty Acid Hydroxytyrosyl Esters of Olive Oils Are Bioaccessible According to Simulated <i>In Vitro</i> Gastrointestinal Digestion: Unraveling the Role of Digestive Enzymes on Their Stability. Journal of Agricultural and Food Chemistry, 2021, 69, 14165-14175.	5.2	4
182	Anti-Inflammatory and Antioxidant Capacity of a Fruit and Vegetable-Based Nutraceutical Measured by Urinary Oxylipin Concentration in a Healthy Population: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Antioxidants, 2022, 11, 1342.	5.1	4
183	Male sexual enhancers from the Peruvian Amazon. Journal of Ethnopharmacology, 2019, 229, 167-179.	4.1	3
184	Unravelling the capacity of hydroxytyrosol and its lipophenolic derivates to modulate the H2O2-induced isoprostanoid profile of THP-1 monocytes by UHPLC-QqQ-MS/MS lipidomic workflow. Microchemical Journal, 2021, 170, 106703.	4.5	3
185	CHAPTER 3. Anti-inflammatory Activity of Coffee. , 2019, , 57-74.		3
186	Gustavia gracillima Miers. flowers effects on enzymatic targets underlying metabolic disorders and characterization of its polyphenolic content by HPLC-DAD-ESI/MS. Food Research International, 2020, 137, 109694.	6.2	2
187	Caffeine Health Claims on Sports Supplement Labeling. Analytical Assessment According to EFSA Scientific Opinion and International Evidence and Criteria. Molecules, 2021, 26, 2095.	3.8	2
188	Comparative Study of Metabolomic Profile and Antioxidant Content of Adult and In Vitro Leaves of Aristotelia chilensis. Plants, 2022, 11, 37.	3.5	2
189	Hydroxytyrosol fatty acid esters as new candidate markers for detecting olive oil inadequate storage conditions by UHPLC-QqQ-MS/MS. Microchemical Journal, 2022, 181, 107656.	4.5	2
190	Lime-Induced Iron Chlorosis in Citrus: Diagnosis Through Physiological and Metabolic Evidences. , 2012, , 321-331.		1
191	A comprehensive approach to the bioavailability and cardiometabolic effects of the bioactive compounds present in espresso coffee and confectionery-derived coffee. Proceedings of the Nutrition Society, 2020, 79, .	1.0	1
192	Fatty Acid and Amino Acid Composition of Citrullus Colocynthis Seeds Growing in Algeria. Egyptian Journal of Chemistry, 2021, .	0.2	1
193	Valorisation of the industrial waste of Chukrasia tabularis A.Juss.: Characterization of the leaves phenolic constituents and antidiabetic-like effects. Industrial Crops and Products, 2022, 185, 115100.	5.2	1
194	Tea and Metabolomics. , 2013, , 727-735.		0
195	Immunoassay for food quality evaluation. , 2019, , 661-695.		0
196	Qualitative analysis of phenolic metabolites from date palm (Phoenix) Tj ETQq0 0 0 rgBT /Overlocl detection system .,0,,.	10 Tf 50	147 Td (dact 0

