Marianne Abifadel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1266761/publications.pdf

Version: 2024-02-01

33 papers 6,008 citations

23 h-index

318942

445137 33 g-index

34 all docs

34 docs citations

times ranked

34

7008 citing authors

#	Article	IF	CITATIONS
1	Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nature Genetics, 2003, 34, 154-156.	9.4	2,532
2	Heterozygous TGFBR2 mutations in Marfan syndrome. Nature Genetics, 2004, 36, 855-860.	9.4	577
3	NARC-1/PCSK9 and Its Natural Mutants. Journal of Biological Chemistry, 2004, 279, 48865-48875.	1.6	544
4	TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nature Genetics, 2012, 44, 916-921.	9.4	319
5	Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (<i>PCSK9</i>) gene in cholesterol metabolism and disease. Human Mutation, 2009, 30, 520-529.	1.1	211
6	Apolipoprotein B100 Metabolism in Autosomal-Dominant Hypercholesterolemia Related to Mutations in PCSK9. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1448-1453.	1.1	171
7	Novel mutations of the PCSK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia. Human Mutation, 2005, 26, 497-497.	1.1	169
8	Overview of the current status of familial hypercholesterolaemia care in over 60 countries - The EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Atherosclerosis, 2018, 277, 234-255.	0.4	163
9	Familial hypercholesterolaemia: A global call to arms. Atherosclerosis, 2015, 243, 257-259.	0.4	148
10	In Vivo Evidence That Furin from Hepatocytes Inactivates PCSK9. Journal of Biological Chemistry, 2011, 286, 4257-4263.	1.6	132
11	Molecular analysis and intestinal expression of SAR1 genes and proteins in Anderson's disease (Chylomicron retention disease). Orphanet Journal of Rare Diseases, 2011, 6, 1.	1.2	116
12	MFAP5 Loss-of-Function Mutations Underscore the Involvement of Matrix Alteration in the Pathogenesis of Familial Thoracic Aortic Aneurysms and Dissections. American Journal of Human Genetics, 2014, 95, 736-743.	2.6	110
13	Identification and characterization of new gain-of-function mutations in the PCSK9 gene responsible for autosomal dominant hypercholesterolemia. Atherosclerosis, 2012, 223, 394-400.	0.4	92
14	Characterization of Autosomal Dominant Hypercholesterolemia Caused by <i>PCSK9</i> Gain of Function Mutations and Its Specific Treatment With Alirocumab, a PCSK9 Monoclonal Antibody. Circulation: Cardiovascular Genetics, 2015, 8, 823-831.	5.1	90
15	Pooling and expanding registries of familial hypercholesterolaemia to assess gaps in care and improve disease management and outcomes: Rationale and design of the global EAS Familial Hypercholesterolaemia Studies Collaboration. Atherosclerosis Supplements, 2016, 22, 1-32.	1.2	90
16	The Proprotein Convertases in Hypercholesterolemia and Cardiovascular Diseases: Emphasis on Proprotein Convertase Subtilisin/Kexin 9. Pharmacological Reviews, 2017, 69, 33-52.	7.1	90
17	Living the PCSK9 Adventure: from the Identification of a New Gene in Familial Hypercholesterolemia Towards a Potential New Class of Anticholesterol Drugs. Current Atherosclerosis Reports, 2014, 16, 439.	2.0	87
18	The molecular basis of familial hypercholesterolemia in Lebanon: Spectrum of <i>LDLR</i> mutations and role of <i>PCSK9</i> as a modifier gene. Human Mutation, 2009, 30, E682-E691.	1.1	82

#	Article	IF	CITATIONS
19	Familial hypercholesterolemia mutations in the Middle Eastern and North African region: A need for a national registry. Journal of Clinical Lipidology, 2015, 9, 187-194.	0.6	44
20	Dyslipidaemia in the Middle East: Current status and a call for action. Atherosclerosis, 2016, 252, 182-187.	0.4	37
21	PCSK9 Mutations in Familial Hypercholesterolemia: from a Groundbreaking Discovery to Anti-PCSK9 Therapies. Current Atherosclerosis Reports, 2017, 19, 49.	2.0	31
22	Strategies for proprotein convertase subtilisin kexin 9 modulation: a perspective on recent patents. Expert Opinion on Therapeutic Patents, 2010, 20, 1547-1571.	2.4	28
23	New Sequencing technologies help revealing unexpected mutations in Autosomal Dominant Hypercholesterolemia. Scientific Reports, 2018, 8, 1943.	1.6	25
24	Pathogenic variants in THSD4, encoding the ADAMTS-like 6 protein, predispose to inherited thoracic aortic aneurysm. Genetics in Medicine, 2021, 23, 111-122.	1.1	25
25	Proprotein convertase subtilisin / kexin 9 (PCSK9) inhibitors and the future of dyslipidemia therapy: an updated patent review (2011-2015). Expert Opinion on Therapeutic Patents, 2016, 26, 1377-1392.	2.4	23
26	Effect of mutations in LDLR and PCSK9 genes on phenotypic variability in Tunisian familial hypercholesterolemia patients. Atherosclerosis, 2012, 222, 158-166.	0.4	22
27	Plasma proproteinâ€convertaseâ€subtilisin/kexin type 9 (PCSK9) and cardiovascular events in type 2 diabetes. Diabetes, Obesity and Metabolism, 2018, 20, 943-953.	2.2	17
28	PCSK9 polymorphism in a Tunisian cohort: Identification of a new allele, L8, and association of allele L10 with reduced coronary heart disease risk. Molecular and Cellular Probes, 2015, 29, 1-6.	0.9	8
29	Identification of the first Tangier disease patient in Lebanon carrying a new pathogenic variant in ABCA1. Journal of Clinical Lipidology, 2018, 12, 1374-1382.	0.6	6
30	Dietary Patterns and Risk Factors of Frailty in Lebanese Older Adults. Nutrients, 2021, 13, 2188.	1.7	6
31	Identification of a Variant in APOB Gene as a Major Cause of Hypobetalipoproteinemia in Lebanese Families. Metabolites, 2021, 11, 564.	1.3	5
32	Phospholipid transfer to high-density lipoprotein (HDL) upon triglyceride lipolysis is directly correlated with HDL-cholesterol levels and is not associated with cardiovascular risk. Atherosclerosis, 2021, 324, 1-8.	0.4	3
33	Circulating PCSK9 Linked to Dyslipidemia in Lebanese Schoolchildren. Metabolites, 2022, 12, 504.	1.3	1