
Alexander Franz Schier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1266617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatial reconstruction of single-cell gene expression data. Nature Biotechnology, 2015, 33, 495-502.	9.4	4,254
2	Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs. Science, 2006, 312, 75-79.	6.0	1,405
3	MicroRNAs Regulate Brain Morphogenesis in Zebrafish. Science, 2005, 308, 833-838.	6.0	1,209
4	Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Research, 2012, 22, 577-591.	2.4	809
5	Efficient Mutagenesis by Cas9 Protein-Mediated Oligonucleotide Insertion and Large-Scale Assessment of Single-Guide RNAs. PLoS ONE, 2014, 9, e98186.	1.1	794
6	Homeodomain-DNA recognition. Cell, 1994, 78, 211-223.	13.5	770
7	Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation. Science, 2010, 327, 348-351.	6.0	681
8	The EGF-CFC Protein One-Eyed Pinhead Is Essential for Nodal Signaling. Cell, 1999, 97, 121-132.	13.5	677
9	Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science, 2018, 360, .	6.0	624
10	Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature, 2012, 485, 471-477.	13.7	621
11	Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature, 1998, 395, 181-185.	13.7	607
12	Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis. Development (Cambridge), 2005, 132, 1907-1921.	1.2	600
13	Nodal Signaling in Vertebrate Development. Annual Review of Cell and Developmental Biology, 2003, 19, 589-621.	4.0	590
14	Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science, 2016, 353, aaf7907.	6.0	570
15	Non-coding RNAs as regulators of embryogenesis. Nature Reviews Genetics, 2011, 12, 136-149.	7.7	558
16	Morphogen Gradients: From Generation to Interpretation. Annual Review of Cell and Developmental Biology, 2011, 27, 377-407.	4.0	505
17	Toddler: An Embryonic Signal That Promotes Cell Movement via Apelin Receptors. Science, 2014, 343, 1248636.	6.0	498
18	Nodal signalling in vertebrate development. Nature, 2000, 403, 385-389.	13.7	487

#	Article	IF	CITATIONS
19	Target Protectors Reveal Dampening and Balancing of Nodal Agonist and Antagonist by miR-430. Science, 2007, 318, 271-274.	6.0	478
20	Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nature Biotechnology, 2018, 36, 442-450.	9.4	478
21	Positional Cloning Identifies Zebrafish one-eyed pinhead as a Permissive EGF-Related Ligand Required during Gastrulation. Cell, 1998, 92, 241-251.	13.5	434
22	Hypocretin/Orexin Overexpression Induces An Insomnia-Like Phenotype in Zebrafish. Journal of Neuroscience, 2006, 26, 13400-13410.	1.7	430
23	Molecular Genetics of Axis Formation in Zebrafish. Annual Review of Genetics, 2005, 39, 561-613.	3.2	425
24	Whole-brain activity mapping onto a zebrafish brain atlas. Nature Methods, 2015, 12, 1039-1046.	9.0	403
25	Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature, 2006, 439, 220-224.	13.7	349
26	Mouse Lefty2 and Zebrafish Antivin Are Feedback Inhibitors of Nodal Signaling during Vertebrate Gastrulation. Molecular Cell, 1999, 4, 287-298.	4.5	348
27	The Maternal-Zygotic Transition: Death and Birth of RNAs. Science, 2007, 316, 406-407.	6.0	343
28	Chromatin signature of embryonic pluripotency is established during genome activation. Nature, 2010, 464, 922-926.	13.7	340
29	Differential Diffusivity of Nodal and Lefty Underlies a Reaction-Diffusion Patterning System. Science, 2012, 336, 721-724.	6.0	336
30	Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nature Genetics, 2000, 26, 365-369.	9.4	319
31	The zebrafish Nodal signal Squint functions as a morphogen. Nature, 2001, 411, 607-610.	13.7	306
32	Zebrafish: genetic tools for studying vertebrate development. Trends in Genetics, 1994, 10, 152-159.	2.9	282
33	Whole-brain serial-section electron microscopy in larval zebrafish. Nature, 2017, 545, 345-349.	13.7	282
34	Differential Regulation of Germline mRNAs in Soma and Germ Cells by Zebrafish miR-430. Current Biology, 2006, 16, 2135-2142.	1.8	280
35	Comparative synteny cloning of zebrafish you-too: mutations in the Hedgehog target gli2 affect ventral forebrain patterning. Genes and Development, 1999, 13, 388-393.	2.7	268
36	Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development (Cambridge), 2013, 140, 2835-2846.	1.2	265

#	Article	IF	CITATIONS
37	A radiation hybrid map of the zebrafish genome. Nature Genetics, 1999, 23, 86-89.	9.4	259
38	A Nodal Signaling Pathway Regulates the Laterality of Neuroanatomical Asymmetries in the Zebrafish Forebrain. Neuron, 2000, 28, 399-409.	3.8	257
39	Bivalent histone modifications in early embryogenesis. Current Opinion in Cell Biology, 2012, 24, 374-386.	2.6	253
40	Nodal Morphogens. Cold Spring Harbor Perspectives in Biology, 2009, 1, a003459-a003459.	2.3	247
41	Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion. ELife, 2016, 5, e12741.	2.8	246
42	Members of the miRNA-200 Family Regulate Olfactory Neurogenesis. Neuron, 2008, 57, 41-55.	3.8	245
43	Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs. Development (Cambridge), 2013, 140, 2828-2834.	1.2	237
44	Escape Behavior Elicited by Single, Channelrhodopsin-2-Evoked Spikes in Zebrafish Somatosensory Neurons. Current Biology, 2008, 18, 1133-1137.	1.8	235
45	CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nature Genetics, 2012, 44, 714-719.	9.4	228
46	Conserved requirement for EGF-CFC genes in vertebrate left-right axis formation. Genes and Development, 1999, 13, 2527-2537.	2.7	223
47	Genetic analysis of zebrafishgli1andgli2reveals divergent requirements forgligenes in vertebrate development. Development (Cambridge), 2003, 130, 1549-1564.	1.2	219
48	Morphogen transport. Development (Cambridge), 2013, 140, 1621-1638.	1.2	217
49	The specificities of sex combs reduced and Antennapedia are defined by a distinct portion of each protein that includes the homeodomain. Cell, 1990, 62, 1087-1103.	13.5	206
50	The EGF-CFC gene family in vertebrate development. Trends in Genetics, 2000, 16, 303-309.	2.9	204
51	Production of maternal-zygotic mutant zebrafish by germ-line replacement. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14919-14924.	3.3	202
52	High-Resolution Sequencing and Modeling Identifies Distinct Dynamic RNA Regulatory Strategies. Cell, 2014, 159, 1698-1710.	13.5	196
53	Direct homeodomain–DNA interaction in the autoregulation of the fushi tarazu gene. Nature, 1992, 356, 804-807.	13.7	195
54	Optical control of metabotropic glutamate receptors. Nature Neuroscience, 2013, 16, 507-516.	7.1	192

ALEXANDER FRANZ SCHIER

#	Article	IF	CITATIONS
55	Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development (Cambridge), 2009, 136, 3089-3098.	1.2	187
56	Monitoring neural activity with bioluminescence during natural behavior. Nature Neuroscience, 2010, 13, 513-520.	7.1	187
57	The role of the zebrafishnodal-related genessquintandcyclopsin patterning of mesendoderm. Development (Cambridge), 2003, 130, 1837-1851.	1.2	180
58	Stat3 Controls Cell Movements during Zebrafish Gastrulation. Developmental Cell, 2002, 2, 363-375.	3.1	171
59	A Genetic Linkage Map for Zebrafish: Comparative Analysis and Localization of Genes and Expressed Sequences. Genome Research, 1999, 9, 334-347.	2.4	164
60	Phenotypic Landscape of Schizophrenia-Associated Genes Defines Candidates and Their Shared Functions. Cell, 2019, 177, 478-491.e20.	13.5	159
61	Conserved and divergent mechanisms in left–right axis formation. Genes and Development, 2000, 14, 763-776.	2.7	159
62	Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish. Nature Communications, 2016, 7, 11663.	5.8	158
63	Zebrafish TRPA1 Channels Are Required for Chemosensation But Not for Thermosensation or Mechanosensory Hair Cell Function. Journal of Neuroscience, 2008, 28, 10102-10110.	1.7	153
64	EGF-CFC proteins are essential coreceptors for the TGF-beta signals Vg1 and GDF1. Genes and Development, 2003, 17, 31-36.	2.7	152
65	Repulsive Interactions Shape the Morphologies and Functional Arrangement of Zebrafish Peripheral Sensory Arbors. Current Biology, 2005, 15, 804-814.	1.8	152
66	Lefty Proteins Are Long-Range Inhibitors of Squint-Mediated Nodal Signaling. Current Biology, 2002, 12, 2124-2128.	1.8	149
67	Specified Neural Progenitors Sort to Form Sharp Domains after Noisy Shh Signaling. Cell, 2013, 153, 550-561.	13.5	147
68	Efficient CRISPR-Cas9-Mediated Generation of Knockin Human Pluripotent Stem Cells Lacking Undesired Mutations at the Targeted Locus. Cell Reports, 2015, 11, 875-883.	2.9	146
69	Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq. Current Biology, 2018, 28, 1052-1065.e7.	1.8	139
70	Axis formation and patterning in zebrafish. Current Opinion in Genetics and Development, 2001, 11, 393-404.	1.5	133
71	Internal guide RNA interactions interfere with Cas9-mediated cleavage. Nature Communications, 2016, 7, 11750.	5.8	133
72	Lefty Blocks a Subset of TGFÎ ² Signals by Antagonizing EGF-CFC Coreceptors. PLoS Biology, 2004, 2, e30.	2.6	132

Alexander Franz Schier

#	Article	IF	CITATIONS
73	Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development (Cambridge), 2015, 142, 633-643.	1.2	131
74	Homeodomain proteins and the regulation of gene expression. Current Opinion in Cell Biology, 1990, 2, 485-495.	2.6	127
75	Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature, 2017, 551, 227-231.	13.7	125
76	A Novel Microtubule Destabilizing Entity from Orthogonal Synthesis of Triazine Library and Zebrafish Embryo Screening. Journal of the American Chemical Society, 2002, 124, 11608-11609.	6.6	124
77	Analysis of the ftz upstream element: germ layer-specific enhancers are independently autoregulated Genes and Development, 1990, 4, 1224-1239.	2.7	120
78	Loss-of-Function Mutations in Growth Differentiation Factor-1 (GDF1) Are Associated with Congenital Heart Defects in Humans. American Journal of Human Genetics, 2007, 81, 987-994.	2.6	119
79	Extracellular Movement of Signaling Molecules. Developmental Cell, 2011, 21, 145-158.	3.1	112
80	Nodal-related signals establish mesendodermal fate and trunk neural identity in zebrafish. Current Biology, 2000, 10, 531-534.	1.8	108
81	The Tangential Nucleus Controls a Gravito-inertial Vestibulo-ocular Reflex. Current Biology, 2012, 22, 1285-1295.	1.8	107
82	A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome Research, 2013, 23, 727-735.	2.4	105
83	fast1 is required for the development of dorsal axial structures in zebrafish. Current Biology, 2000, 10, 1051-1054.	1.8	104
84	Behavioral screening for neuroactive drugs in zebrafish. Developmental Neurobiology, 2012, 72, 373-385.	1.5	103
85	A Convergent and Essential Interneuron Pathway for Mauthner-Cell-Mediated Escapes. Current Biology, 2015, 25, 1526-1534.	1.8	102
86	Polycystin-2 Immunolocalization and Function in Zebrafish. Journal of the American Society of Nephrology: JASN, 2006, 17, 2706-2718.	3.0	101
87	The homeobox genes <i>vox</i> and <i>vent</i> are redundant repressors of dorsal fates in zebrafish. Development (Cambridge), 2001, 128, 2407-2420.	1.2	100
88	Genetic Linkage Mapping of Zebrafish Genes and ESTs. Genome Research, 2000, 10, 558-567.	2.4	98
89	Zebrafish Gli3 functions as both an activator and a repressor in Hedgehog signaling. Developmental Biology, 2005, 277, 537-556.	0.9	96
90	Identifying (nonâ€)coding RNAs and small peptides: Challenges and opportunities. BioEssays, 2015, 37, 103-112.	1.2	96

#	Article	IF	CITATIONS
91	Nanog-like Regulates Endoderm Formation through the Mxtx2-Nodal Pathway. Developmental Cell, 2012, 22, 625-638.	3.1	95
92	A loss-of-function mutation in the CFC domain of TDGF1 is associated with human forebrain defects. Human Genetics, 2002, 110, 422-428.	1.8	93
93	Nodal Stability Determines Signaling Range. Current Biology, 2005, 15, 31-36.	1.8	93
94	Response to Nodal morphogen gradient is determined by the kinetics of target gene induction. ELife, 2015, 4, .	2.8	88
95	Canonical nucleosome organization at promoters forms during genome activation. Genome Research, 2014, 24, 260-266.	2.4	87
96	A Massively Parallel Reporter Assay of 3′ UTR Sequences Identifies InÂVivo Rules for mRNA Degradation. Molecular Cell, 2017, 68, 1083-1094.e5.	4.5	87
97	Assembly of Trigeminal Sensory Ganglia by Chemokine Signaling. Neuron, 2005, 47, 653-666.	3.8	86
98	Smac Mimetic Bypasses Apoptosis Resistance in FADD- or Caspase-8-Deficient Cells by Priming for Tumor Necrosis Factor α-Induced Necroptosis. Neoplasia, 2011, 13, 971-IN29.	2.3	86
99	Neuropeptidergic Signaling Partitions Arousal Behaviors in Zebrafish. Journal of Neuroscience, 2014, 34, 3142-3160.	1.7	82
100	A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States. Neuron, 2016, 89, 842-856.	3.8	81
101	Chapter 15 Positional Cloning of Mutated Zebrafish Genes. Methods in Cell Biology, 1998, 60, 259-286.	0.5	79
102	Attenuation of Notch and Hedgehog Signaling Is Required for Fate Specification in the Spinal Cord. PLoS Genetics, 2012, 8, e1002762.	1.5	76
103	Nodal signaling activates differentiation genes during zebrafish gastrulation. Developmental Biology, 2007, 304, 525-540.	0.9	75
104	Monitoring Sleep and Arousal in Zebrafish. Methods in Cell Biology, 2010, 100, 281-294.	0.5	75
105	Inactivation of dispatched 1 by the chameleon mutation disrupts Hedgehog signalling in the zebrafish embryo. Developmental Biology, 2004, 269, 381-392.	0.9	74
106	Distributed Plasticity Drives Visual Habituation Learning in Larval Zebrafish. Current Biology, 2019, 29, 1337-1345.e4.	1.8	74
107	Single-cell internalization during zebrafish gastrulation. Current Biology, 2001, 11, 1261-1265.	1.8	70
108	Individual long non-coding RNAs have no overt functions in zebrafish embryogenesis, viability and fertility. ELife, 2019, 8, .	2.8	70

#	Article	IF	CITATIONS
109	A Brain-wide Circuit Model of Heat-Evoked Swimming Behavior in Larval Zebrafish. Neuron, 2018, 98, 817-831.e6.	3.8	69
110	Developmental Regulation of Expression and Activity of Multiple Forms of the Drosophila RAC Protein Kinase. Journal of Biological Chemistry, 1995, 270, 4066-4075.	1.6	68
111	MicroRNA Function and Mechanism: Insights from Zebra Fish. Cold Spring Harbor Symposia on Quantitative Biology, 2006, 71, 195-203.	2.0	66
112	Multicolor Brainbow Imaging in Zebrafish. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot5546-pdb.prot5546.	0.2	65
113	Neuropeptidergic Control of Sleep and Wakefulness. Annual Review of Neuroscience, 2014, 37, 503-531.	5.0	60
114	The role of hair cells, cilia and ciliary motility in otolith formation in the zebrafish otic vesicle. Development (Cambridge), 2012, 139, 1777-1787.	1.2	59
115	Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms. Journal of Comparative Neurology, 2015, 523, 1639-1663.	0.9	59
116	Scale-invariant patterning by size-dependent inhibition of Nodal signalling. Nature Cell Biology, 2018, 20, 1032-1042.	4.6	58
117	Single-cell biology: beyond the sum of its parts. Nature Methods, 2020, 17, 17-20.	9.0	57
118	In vivo birthdating by BAPTISM reveals that trigeminal sensory neuron diversity depends on early neurogenesis. Development (Cambridge), 2008, 135, 3259-3269.	1.2	56
119	Polq-Mediated End Joining Is Essential for Surviving DNA Double-Strand Breaks during Early Zebrafish Development. Cell Reports, 2016, 15, 707-714.	2.9	56
120	Functional specificity of the homeodomain protein fushi tarazu: the role of DNA-binding specificity in vivo Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 1450-1454.	3.3	55
121	Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9. Development (Cambridge), 2015, 142, 1113-24.	1.2	55
122	Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR–Cas9 barcodes by scGESTALT. Nature Protocols, 2018, 13, 2685-2713.	5.5	55
123	Robo2 determines subtype-specific axonal projections of trigeminal sensory neurons. Development (Cambridge), 2012, 139, 591-600.	1.2	54
124	Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm. ELife, 2017, 6, .	2.8	54
125	The zebrafish organizer. Current Opinion in Genetics and Development, 1998, 8, 464-471.	1.5	53
126	Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives. Cell Reports, 2017, 20, 2116-2130.	2.9	53

Alexander Franz Schier

#	Article	IF	CITATIONS
127	Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets. Nature Neuroscience, 2019, 22, 1477-1492.	7.1	52
128	Nodal patterning without Lefty inhibitory feedback is functional but fragile. ELife, 2017, 6, .	2.8	52
129	Emergence of Neuronal Diversity during Vertebrate Brain Development. Neuron, 2020, 108, 1058-1074.e6.	3.8	51
130	Mixer/Bon and FoxH1/Sur have overlapping and divergent roles in Nodal signaling and mesendoderm induction. Development (Cambridge), 2003, 130, 5589-5599.	1.2	49
131	<i>no tail</i> integrates two modes of mesoderm induction. Development (Cambridge), 2010, 137, 1127-1135.	1.2	49
132	Chemokine Signaling: Rules of Attraction. Current Biology, 2003, 13, R192-R194.	1.8	45
133	Nodal signaling promotes the speed and directional movement of cardiomyocytes in zebrafish. Developmental Dynamics, 2008, 237, 3624-3633.	0.8	42
134	Gaze-Stabilizing Central Vestibular Neurons Project Asymmetrically to Extraocular Motoneuron Pools. Journal of Neuroscience, 2017, 37, 11353-11365.	1.7	41
135	The study of psychiatric disease genes and drugs in zebrafish. Current Opinion in Neurobiology, 2015, 30, 122-130.	2.0	36
136	Targeted mutagenesis in zebrafish. Nature Biotechnology, 2008, 26, 650-651.	9.4	35
137	Sites of action of sleep and wake drugs: insights from model organisms. Current Opinion in Neurobiology, 2013, 23, 831-840.	2.0	35
138	The Structure and Timescales of Heat Perception in Larval Zebrafish. Cell Systems, 2015, 1, 338-348.	2.9	35
139	Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish. PLoS ONE, 2015, 10, e0139504.	1.1	35
140	Maternal nodal and zebrafish embryogenesis. Nature, 2007, 450, E1-E2.	13.7	34
141	Conserved regulation of Nodal-mediated left-right patterning in zebrafish and mouse. Development (Cambridge), 2018, 145, .	1.2	34
142	Zebrafish <i>nanog</i> is primarily required in extraembryonic tissue. Development (Cambridge), 2018, 145, .	1.2	30
143	Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis. Development (Cambridge), 2015, 142, 2704-18.	1.2	29
144	Genetics of neural development in zebrafish. Current Opinion in Neurobiology, 1997, 7, 119-126.	2.0	28

#	Article	IF	CITATIONS
145	Touch responsiveness in zebrafish requires voltage-gated calcium channel 2.1b. Journal of Neurophysiology, 2012, 108, 148-159.	0.9	27
146	Convergent Temperature Representations in Artificial and Biological Neural Networks. Neuron, 2019, 103, 1123-1134.e6.	3.8	24
147	Analysis of Chromosomal Rearrangements Induced by Postmeiotic Mutagenesis With Ethylnitrosourea in Zebrafish. Genetics, 2000, 155, 261-272.	1.2	24
148	Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling. ELife, 2017, 6, .	2.8	24
149	Gene family evolution underlies cell-type diversification in the hypothalamus of teleosts. Nature Ecology and Evolution, 2022, 6, 63-76.	3.4	24
150	Zebrafish earns its stripes. Nature, 2013, 496, 443-444.	13.7	21
151	The pattern of nodal morphogen signaling is shaped by co-receptor expression. ELife, 2021, 10, .	2.8	20
152	From screens to genes: prospects for insertional mutagenesis in zebrafish Genes and Development, 1996, 10, 3077-3080.	2.7	19
153	Rise of the source–sink model. Nature, 2009, 461, 480-481.	13.7	17
154	Clearing the Path for Germ Cells. Cell, 2008, 132, 337-339.	13.5	15
155	Zebrafish <i>dscaml1</i> Deficiency Impairs Retinal Patterning and Oculomotor Function. Journal of Neuroscience, 2020, 40, 143-158.	1.7	15
156	Measuring Protein Stability in Living Zebrafish Embryos Using Fluorescence Decay After Photoconversion (FDAP). Journal of Visualized Experiments, 2015, , 52266.	0.2	9
157	Mesoderm Induction and Patterning. Results and Problems in Cell Differentiation, 2002, 40, 15-27.	0.2	8
158	Axis Formation: Squint Comes into Focus. Current Biology, 2005, 15, R1002-R1005.	1.8	5
159	Should I Stay or Should I Go: Neuromodulators of Behavioral States. Cell, 2013, 154, 955-956.	13.5	3
160	Homeodomain-DNA Recognition. World Scientific Series in 20th Century Chemistry, 1995, , 493-505.	0.0	2
161	Tail of decay. Nature, 2004, 427, 403-404.	13.7	2
162	BAPTI and BAPTISM Birthdating of Neurons in Zebrafish. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067520.	0.2	2

#	Article	IF	CITATIONS
163	Convergent Temperature Representations in Artificial and Biological Neural Networks. SSRN Electronic Journal, 0, , .	0.4	1
164	fast1 is required for the development of dorsal axial structures in zebrafish. Current Biology, 2001, 11, 1643.	1.8	0
165	Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis. Journal of Cell Science, 2015, 128, e1.2-e1.2.	1.2	0
166	A Brain Wide Circuit Model of Heat Evoked Swimming Behavior in Larval Zebrafish. SSRN Electronic Journal, 0, , .	0.4	0
167	Basic science under threat: Lessons from the Skirball Institute. Cell, 2022, 185, 755-758.	13.5	0