List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/126562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of <i>Brassica napus</i> . A role for thiolâ€peptides in the longâ€distance transport of cadmium and the effect of cadmium on iron translocation. Plant Journal, 2008, 54, 249-259.	2.8	311
2	Localizing frustration in native proteins and protein assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19819-19824.	3.3	292
3	Structural Evaluation of Phospholipid Bicelles for Solution-State Studies of Membrane-Associated Biomolecules. Biophysical Journal, 2001, 81, 2163-2171.	0.2	265
4	Frustration in biomolecules. Quarterly Reviews of Biophysics, 2014, 47, 285-363.	2.4	253
5	Measurement of Amide Hydrogen Exchange by MALDI-TOF Mass Spectrometry. Analytical Chemistry, 1998, 70, 3987-3995.	3.2	198
6	On the role of frustration in the energy landscapes of allosteric proteins. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3499-3503.	3.3	165
7	An Improved Grafting Technique for Mature Arabidopsis Plants Demonstrates Long-Distance Shoot-to-Root Transport of Phytochelatins in Arabidopsis. Plant Physiology, 2006, 141, 108-120.	2.3	144
8	Allosteric networks in thrombin distinguish procoagulant vs. anticoagulant activities. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21216-21222.	3.3	137
9	Molecular Mechanisms of System Control of NF-κB Signaling by lκBα. Biochemistry, 2010, 49, 1560-1567.	1.2	134
10	RNAs interact with BRD4 to promote enhanced chromatin engagement and transcription activation. Nature Structural and Molecular Biology, 2018, 25, 687-697.	3.6	123
11	Orientation and Effects of Mastoparan X on Phospholipid Bicelles. Biophysical Journal, 2001, 80, 280-293.	0.2	120
12	An unexpected twist in viral capsid maturation. Nature, 2009, 458, 646-650.	13.7	120
13	Epitope mapping of a monoclonal antibody against human thrombin by H/D-exchange mass spectrometry reveals selection of a diverse sequence in a highly conserved protein. Protein Science, 2002, 11, 1300-1308.	3.1	112
14	Solvent accessibility of the thrombin-thrombomodulin interface11Edited by M. F. Moody. Journal of Molecular Biology, 2001, 306, 575-589.	2.0	106
15	Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation. , 1999, 13, 149-159.		102
16	Biophysical characterization of the free lκBα ankyrin repeat domain in solution. Protein Science, 2004, 13, 1767-1777.	3.1	101
17	Amide H/2H Exchange Reveals Communication Between the cAMP and Catalytic Subunit-binding Sites in the Rlα Subunit of Protein Kinase A. Journal of Molecular Biology, 2002, 323, 377-386.	2.0	95
18	Folding landscapes of ankyrin repeat proteins: experiments meet theory. Current Opinion in Structural Biology, 2008, 18, 27-34.	2.6	92

#	Article	IF	CITATIONS
19	Site-specific identification and quantitation of endogenous SUMO modifications under native conditions. Nature Communications, 2017, 8, 1171.	5.8	92
20	The Energy Landscape of Modular Repeat Proteins: Topology Determines Folding Mechanism in the Ankyrin Family. Journal of Molecular Biology, 2005, 354, 679-692.	2.0	91
21	Identification of the protein kinase A regulatory RIÂ-catalytic subunit interface by amide H/2H exchange and protein docking. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13264-13269.	3.3	88
22	Kinetic enhancement of NF-κBÂ∙DNA dissociation by lκBα. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19328-19333.	3.3	88
23	Regions of IÂBÂ that are critical for its inhibition of NF-ÂB{middle dot}DNA interaction fold upon binding to NF-ÂB. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18951-18956.	3.3	82
24	Molecular stripping in the <i>NF-κB/lκB/DNA</i> genetic regulatory network. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 110-115.	3.3	81
25	Two Apolipoprotein E Mimetic Peptides, ApoE(130â^'149) and ApoE(141â^'155)2, Bind to LRP1â€. Biochemistry, 2004, 43, 7328-7335.	1.2	78
26	Frustration, function and folding. Current Opinion in Structural Biology, 2018, 48, 68-73.	2.6	78
27	Hydrogen-exchange mass spectrometry for the study of intrinsic disorder in proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 1202-1209.	1.1	74
28	Cryo-EM structure of OSCA1.2 from <i>Oryza sativa</i> elucidates the mechanical basis of potential membrane hyperosmolality gating. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14309-14318.	3.3	71
29	Automated extraction of backbone deuteration levels from amide H/2H mass spectrometry experiments. Protein Science, 2006, 15, 583-601.	3.1	70
30	Thermodynamics Reveal that Helix Four in the NLS of NF-κB p65 Anchors IκBα, Forming a Very Stable Complex. Journal of Molecular Biology, 2006, 360, 421-434.	2.0	69
31	Stabilizing lκBα by "Consensus―Design. Journal of Molecular Biology, 2007, 365, 1201-1216.	2.0	68
32	Prediction of Native-State Hydrogen Exchange from Perfectly Funneled Energy Landscapes. Journal of the American Chemical Society, 2011, 133, 17463-17472.	6.6	68
33	Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2. Nucleic Acids Research, 2018, 46, 279-292.	6.5	68
34	The Energy Landscapes of Repeat-Containing Proteins: Topology, Cooperativity, and the Folding Funnels of One-Dimensional Architectures. PLoS Computational Biology, 2008, 4, e1000070.	1.5	67
35	Large-scale expression, purification and characterization of small fragments of thrombomodulin: the roles of the sixth domain and of methionine 388. Protein Engineering, Design and Selection, 1995, 8, 1177-1187.	1.0	66
36	Energetics of Thrombinâ^'Thrombomodulin Interaction. Biochemistry, 1997, 36, 6674-6681.	1.2	66

#	Article	IF	CITATIONS
37	Electrostatic dependence of the thrombin-thrombomodulin interaction 1 1Edited by J. A. Wells. Journal of Molecular Biology, 2000, 296, 651-658.	2.0	61
38	Transfer of Flexibility between Ankyrin Repeats in lκBα upon Formation of the NF-κB Complex. Journal of Molecular Biology, 2008, 380, 917-931.	2.0	61
39	Phosphorylation causes subtle changes in solvent accessibility at the interdomain interface of methylesterase CheB 1 1Edited by P. E. Wright. Journal of Molecular Biology, 2001, 307, 967-976.	2.0	60
40	Interactions of the NPXY microdomains of the low density lipoprotein receptorâ€related protein 1. Proteomics, 2009, 9, 5016-5028.	1.3	59
41	Pre-folding ll̂®Bα Alters Control of NF-l̂®B Signaling. Journal of Molecular Biology, 2008, 380, 67-82.	2.0	58
42	Solvent accessibility of protein surfaces by amide H/2H exchange MALDI-TOF mass spectrometry. Journal of the American Society for Mass Spectrometry, 2006, 17, 1490-1497.	1.2	57
43	Expanding Proteome Coverage with Orthogonal-specificity α-Lytic Proteases. Molecular and Cellular Proteomics, 2014, 13, 823-835.	2.5	54
44	Structure of the Minimal Interface Between ApoE and LRP. Journal of Molecular Biology, 2010, 398, 306-319.	2.0	53
45	Calcium sensing by the STIM1 ER-luminal domain. Nature Communications, 2018, 9, 4536.	5.8	51
46	The lκBα/NFâ€ÎºB complex has two hot spots, one at either end of the interface. Protein Science, 2008, 17, 2051-2058.	3.1	48
47	The Dynamic Structure of Thrombin in Solution. Biophysical Journal, 2012, 103, 79-88.	0.2	47
48	Ligand-induced Conformational Changes in the Acetylcholine-binding Protein Analyzed by Hydrogen-Deuterium Exchange Mass Spectrometry. Journal of Biological Chemistry, 2006, 281, 12170-12177.	1.6	46
49	Two different proteins that compete for binding to thrombin have opposite kinetic and thermodynamic profiles. Protein Science, 2004, 13, 166-176.	3.1	45
50	Visualization of the nanospring dynamics of the lκBα ankyrin repeat domain in real time. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10178-10183.	3.3	45
51	Decoding of Lipoproteinâ^'Receptor Interactions: Properties of Ligand Binding Modules Governing Interactions with Apolipoprotein E. Biochemistry, 2010, 49, 1207-1216.	1.2	43
52	Structural basis for GPCR-independent activation of heterotrimeric Gi proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16394-16403.	3.3	43
53	Solution structure of the smallest cofactor-active fragment of thrombomodulin. Nature Structural Biology, 2000, 7, 200-204.	9.7	42
54	DECA, A Comprehensive, Automatic Post-processing Program for HDX-MS Data*. Molecular and Cellular Proteomics, 2019, 18, 2516-2523.	2.5	42

#	Article	IF	CITATIONS
55	Role of disorder in lκB–NFκB interaction. IUBMB Life, 2012, 64, 499-505.	1.5	41
56	Allosteric Changes in Solvent Accessibility Observed in Thrombin upon Active Site Occupationâ€. Biochemistry, 2004, 43, 5246-5255.	1.2	40
57	Direct observation of a transient ternary complex during IÂBÂ-mediated dissociation of NF-ÂB from DNA. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 225-230.	3.3	40
58	Surveying biomolecular frustration at atomic resolution. Nature Communications, 2020, 11, 5944.	5.8	40
59	Monomeric ephrinB2 binding induces allosteric changes in Nipah virus G that precede its full activation. Nature Communications, 2017, 8, 781.	5.8	38
60	All Three LDL Receptor Homology Regions of the LDL Receptor-Related Protein Bind Multiple Ligandsâ€. Biochemistry, 2003, 42, 13049-13057.	1.2	37
61	Structural and Functional Consequences of Tyrosine Phosphorylation in the LRP1 Cytoplasmic Domain. Journal of Biological Chemistry, 2008, 283, 15656-15664.	1.6	37
62	Correlated Motions and Residual Frustration in Thrombin. Journal of Physical Chemistry B, 2013, 117, 12857-12863.	1.2	37
63	Structure of the fifth EGF-like domain of thrombomodulin: an EGF-like domain with a novel disulfide-bonding pattern 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1997, 273, 913-926.	2.0	35
64	Thrombomodulin Tightens the Thrombin Active Site Loops To Promote Protein C Activation. Biochemistry, 2005, 44, 14784-14791.	1.2	35
65	Conformation and dynamics of the kinase domain drive subcellular location and activation of LRRK2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	35
66	Development of a Rapid and Sensitive CasRx-Based Diagnostic Assay for SARS-CoV-2. ACS Sensors, 2021, 6, 3957-3966.	4.0	35
67	Functional importance of stripping in NFκB signaling revealed by a stripping-impaired lκBα mutant. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1916-1921.	3.3	32
68	Solvent Exposed Non-contacting Amino Acids Play a Critical Role in NF-κB/IκBα Complex Formation. Journal of Molecular Biology, 2002, 324, 587-597.	2.0	31
69	Induced Fit, Folding, and Recognition of the NF-κB-Nuclear Localization Signals by IκBα and IκBβ. Journal of Molecular Biology, 2007, 367, 262-274.	2.0	31
70	Complementarity of Hydrogen/Deuterium Exchange Mass Spectrometry and Cryo-Electron Microscopy. Trends in Biochemical Sciences, 2020, 45, 906-918.	3.7	31
71	Critical Salt Bridges Guide Capsid Assembly, Stability, and Maturation Behavior in Bacteriophage HK97. Molecular and Cellular Proteomics, 2010, 9, 1752-1763.	2.5	30
72	The RelA Nuclear Localization Signal Folds upon Binding to lκBα. Journal of Molecular Biology, 2011, 405, 754-764.	2.0	29

#	Article	IF	CITATIONS
73	Three-Dimensional Domain Swapping Changes the Folding Mechanism of the Forkhead Domain of FoxP1. Biophysical Journal, 2016, 110, 2349-2360.	0.2	29
74	Hydrogen-deuterium exchange mass spectrometry reveals folding and allostery in protein-protein interactions. Methods, 2018, 144, 43-52.	1.9	29
75	DNA and lκBα Both Induce Long-Range Conformational Changes in NFκB. Journal of Molecular Biology, 2017, 429, 999-1008.	2.0	28
76	Synthesis, activity, and preliminary structure of the fourth EGF-like domain of thrombomodulin. Protein Science, 1995, 4, 1683-1695.	3.1	27
77	NMR Structures Reveal How Oxidation Inactivates Thrombomodulinâ€. Biochemistry, 2003, 42, 11932-11942.	1.2	27
78	Structural and functional consequences of methionine oxidation in thrombomodulin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1703, 141-147.	1.1	27
79	HK97 Maturation Studied by Crystallography and H/2H Exchange Reveals the Structural Basis for Exothermic Particle Transitions. Journal of Molecular Biology, 2010, 397, 560-574.	2.0	27
80	Discovery of a novel conformational equilibrium in urokinase-type plasminogen activator. Scientific Reports, 2017, 7, 3385.	1.6	27
81	Resolving the NFήB Heterodimer Binding Paradox: Strain and Frustration Guide the Binding of Dimeric Transcription Factors. Journal of the American Chemical Society, 2017, 139, 18558-18566.	6.6	27
82	Structural Basis for Shelterin Bridge Assembly. Molecular Cell, 2017, 68, 698-714.e5.	4.5	27
83	Accurate Prediction of Amide Exchange in the Fast Limit Reveals Thrombin Allostery. Biophysical Journal, 2019, 116, 49-56.	0.2	27
84	Thrombin-bound structure of an EGF subdomain from human thrombomodulin determined by transferred nuclear Overhauser effects. Biochemistry, 1994, 33, 13553-13560.	1.2	26
85	Detection of a ternary complex of NF-κB and lκBα with DNA provides insights into how lκBα removes NF-κB from transcription sites. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1367-1372.	3.3	26
86	Dynamics of ABC Transporter P-glycoprotein in Three Conformational States. Scientific Reports, 2019, 9, 15092.	1.6	26
87	The plastic landscape of repeat proteins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7735-7736.	3.3	25
88	Single-Molecule FRET Reveals the Native-State Dynamics of the lκBα Ankyrin Repeat Domain. Journal of Molecular Biology, 2013, 425, 2578-2590.	2.0	25
89	Protein–protein interaction dynamics by amide H/2H exchange mass spectrometry. International Journal of Mass Spectrometry, 2005, 240, 285-290.	0.7	24
90	Folding Kinetics of the Cooperatively Folded Subdomain of the lκBα Ankyrin Repeat Domain. Journal of Molecular Biology, 2011, 408, 163-176.	2.0	24

#	Article	IF	CITATIONS
91	Thrombinâ€binding affinities of different disulfideâ€bonded isomers of the fifth EGFâ€like domain of thrombomodulin. Protein Science, 1995, 4, 2129-2137.	3.1	23
92	Functional Dynamics of the Folded Ankyrin Repeats of lκBα Revealed by Nuclear Magnetic Resonance. Biochemistry, 2009, 48, 8023-8031.	1.2	22
93	Differential Local Stability Governs the Metamorphic Fold Switch of Bacterial Virulence Factor RfaH. Biophysical Journal, 2020, 118, 96-104.	0.2	22
94	Disulfide bond plasticity in epidermal growth factor. , 2000, 40, 168-174.		21
95	Thermodynamic Compensation upon Binding to Exosite 1 and the Active Site of Thrombin. Biochemistry, 2011, 50, 4590-4596.	1.2	21
96	Predicted disorder-to-order transition mutations in lκBα disrupt function. Physical Chemistry Chemical Physics, 2014, 16, 6480.	1.3	21
97	NMR reveals a dynamic allosteric pathway in thrombin. Scientific Reports, 2017, 7, 39575.	1.6	21
98	Measurement of Solvent Accessibility at Protein–Protein Interfaces. , 2005, 305, 065-080.		20
99	PEST Control of Molecular Stripping of NFκB from DNA Transcription Sites. Journal of Physical Chemistry B, 2016, 120, 8532-8538.	1.2	20
100	Consequences of IkappaB alpha hydroxylation by the factor inhibiting HIF (FIH). FEBS Letters, 2010, 584, 4725-4730.	1.3	19
101	Dynamic Consequences of Mutation of Tryptophan 215 in Thrombin. Biochemistry, 2018, 57, 2694-2703.	1.2	19
102	Mutations in the Fourth EGF-like Domain Affect Thrombomodulin-Induced Changes in the Active Site of Thrombin. Biochemistry, 2008, 47, 10933-10939.	1.2	18
103	Structure and dynamics of the ASB9 CUL-RING E3 Ligase. Nature Communications, 2020, 11, 2866.	5.8	18
104	Thrombin inhibition by cyclic peptides from thrombomodulin. Protein Science, 1995, 4, 773-780.	3.1	17
105	Flexible Regions within lκBα Create the Ubiquitin-independent Degradation Signal. Journal of Biological Chemistry, 2010, 285, 32927-32936.	1.6	17
106	Purification and characterization of the Staphylococcus aureus bacillithiol transferase BstA. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2851-2861.	1.1	17
107	Thrombomodulin Binding Selects the Catalytically Active Form of Thrombin. Biochemistry, 2015, 54, 6650-6658.	1.2	17
108	Discrete Kinetic Models from Funneled Energy Landscape Simulations. PLoS ONE, 2012, 7, e50635.	1.1	17

#	Article	IF	CITATIONS
109	Structural resiliency of an EGFâ€like subdomain bound to its target protein, thrombin. Protein Science, 1996, 5, 195-203.	3.1	16
110	R-subunit Isoform Specificity in Protein Kinase A: Distinct Features of Protein Interfaces in PKA Types I and II by Amide H/2H Exchange Mass Spectrometry. Journal of Molecular Biology, 2007, 374, 487-499.	2.0	16
111	The Structural Basis for Pseudoreversion of the H95N Lesion by the Secondary S96P Mutation in Triosephosphate Isomeraseâ€,â€j. Biochemistry, 1996, 35, 15474-15484.	1.2	15
112	Amide H/2H Exchange Reveals a Mechanism of Thrombin Activationâ€. Biochemistry, 2006, 45, 7724-7732.	1.2	15
113	Deciphering and engineering chromodomain-methyllysine peptide recognition. Science Advances, 2018, 4, eaau1447.	4.7	15
114	Hydrogen/Deuterium Exchange and Nuclear Magnetic Resonance Spectroscopy Reveal Dynamic Allostery on Multiple Time Scales in the Serine Protease Thrombin. Biochemistry, 2021, 60, 3441-3448.	1.2	15
115	RelA-Containing NFκB Dimers Have Strikingly Different DNA-Binding Cavities in the Absence of DNA. Journal of Molecular Biology, 2018, 430, 1510-1520.	2.0	14
116	Exclusivity and Compensation in NFκB Dimer Distributions and IκB Inhibition. Biochemistry, 2019, 58, 2555-2563.	1.2	14
117	Continuous Production of Thrombomodulin from a Pichia pastoris Fermentation. Journal of Chemical Technology and Biotechnology, 1996, 67, 143-148.	1.6	13
118	Transcription factor NF-κB unravels nucleosomes. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129934.	1.1	13
119	Intrinsically Disordered Regions of the DNA-Binding Domain of Human FoxP1 Facilitate Domain Swapping. Journal of Molecular Biology, 2020, 432, 5411-5429.	2.0	12
120	Observation of Solvent Penetration during Cold Denaturation of E.Âcoli Phosphofructokinase-2. Biophysical Journal, 2013, 104, 2254-2263.	0.2	11
121	How the Ankyrin and SOCS Box Protein, ASB9, Binds to Creatine Kinase. Biochemistry, 2015, 54, 1673-1680.	1.2	11
122	Target binding triggers hierarchical phosphorylation of human Argonaute-2 to promote target release. ELife, 0, 11, .	2.8	11
123	Dynamics of the Fragment of Thrombomodulin Containing the Fourth and Fifth Epidermal Growth Factor-like Domains Correlate with Function. Biochemistry, 2005, 44, 1225-1233.	1.2	10
124	Long-Range Effects and Functional Consequences of Stabilizing Mutations in the Ankyrin Repeat Domain of Il̂ºBα. Journal of Molecular Biology, 2013, 425, 902-913.	2.0	10
125	Model of the Ankyrin and SOCS Box Protein, ASB9, E3 Ligase Reveals a Mechanism for Dynamic Ubiquitin Transfer. Structure, 2016, 24, 1248-1256.	1.6	10
126	Binding of NFκB Appears to Twist the Ankyrin Repeat Domain of IκBα. Biophysical Journal, 2016, 110, 887-895.	0.2	10

#	Article	IF	CITATIONS
127	The Mechanism of NEDD8 Activation of CUL5 Ubiquitin E3 Ligases. Molecular and Cellular Proteomics, 2021, 20, 100019.	2.5	10
128	Application of Amide Proton Exchange Mass Spectrometry for the Study of Proteinâ€Protein Interactions. Current Protocols in Protein Science, 2005, 40, Unit20.9.	2.8	9
129	Protein Interactions among Fe65, the Low-Density Lipoprotein Receptor-Related Protein, and the Amyloid Precursor Protein. Biochemistry, 2011, 50, 6208-6216.	1.2	8
130	The Folding Unit of Phosphofructokinase-2 as Defined by the Biophysical Properties of a Monomeric Mutant. Biophysical Journal, 2015, 108, 2350-2361.	0.2	8
131	Structural characterization of the ternary complex that mediates termination of NF-κB signaling by lκBα. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6212-6217.	3.3	8
132	Rapid mass spectrometric analysis of ¹⁵ N‣eu incorporation fidelity during preparation of specifically labeled NMR samples. Protein Science, 2008, 17, 1636-1639.	3.1	7
133	Tuning of Conformational Dynamics Through Evolution-Based Design Modulates the Catalytic Adaptability of an Extremophilic Kinase. ACS Catalysis, 2020, 10, 10847-10857.	5.5	7
134	OUP accepted manuscript. Nucleic Acids Research, 2021, 49, 11211-11223.	6.5	7
135	Prediction of the presence of a seventh ankyrin repeat in lκBε from homology modeling combined with hydrogen–deuterium exchange mass spectrometry (HDXâ€MS). Protein Science, 2018, 27, 1624-1635.	3.1	6
136	Consequences of Fuzziness in the NFκB/IκBα Interaction. Advances in Experimental Medicine and Biology, 2012, 725, 74-85.	0.8	6
137	Recognition of Methylated Peptides by <i>Drosophila melanogaster</i> Polycomb Chromodomain. Journal of Proteome Research, 2013, 12, 1467-1477.	1.8	5
138	Serine protease dynamics revealed by NMR analysis of the thrombin-thrombomodulin complex. Scientific Reports, 2021, 11, 9354.	1.6	5
139	Identification of Methyllysine Peptides Binding to Chromobox Protein Homolog 6 Chromodomain in the Human Proteome. Molecular and Cellular Proteomics, 2013, 12, 2750-2760.	2.5	4
140	Decoupling a tandem-repeat protein: Impact of multiple loop insertions on a modular scaffold. Scientific Reports, 2019, 9, 15439.	1.6	3
141	Ligand binding modulates the structural dynamics and activity of urokinase-type plasminogen activator: A possible mechanism of plasminogen activation. PLoS ONE, 2018, 13, e0192661.	1.1	3
142	Unusual dimerization of a Bc Csp mutant leads to reduced conformational dynamics. FEBS Journal, 2017, 284, 1882-1896.	2.2	2
143	Sequence and functional differences in the ATPase domains of CHD3 and SNF2H promise potential for selective regulability and drugability. FEBS Journal, 2021, 288, 4000-4023.	2.2	2
144	Open, engage, bind, translocate: The multi-level dynamics of bacterial protein translocation. Structure, 2021, 29, 781-782.	1.6	2

9

#	Article	IF	CITATIONS
145	Dimer dissociation is a key energetic event in the fold-switch pathway of KaiB. Biophysical Journal, 2022, 121, 943-955.	0.2	2
146	Allosteric couplings upon binding of RfaH to transcription elongation complexes. Nucleic Acids Research, 2022, 50, 6384-6397.	6.5	2
147	Achieving a Realistic Native Protein Ensemble by HDX-MS and Computational Modeling. Biophysical Journal, 2021, 120, 5139-5140.	0.2	1
148	How Thrombomodulin Enables W215A/E217A Thrombin to Cleave Protein C but Not Fibrinogen. Biochemistry, 2022, 61, 77-84.	1.2	1
149	Three reviewer rule. Bio/technology, 1995, 13, 1030-1031.	1.9	Ο
150	The Phylogenetics of Dynamics in DNA Clamp Proteins. Structure, 2014, 22, 511-512.	1.6	0
151	H/2H Exchange Mass Spectrometry of Protein Complexes. , 2007, , 169-187.		Ο
152	Functional profiling of endogenous SUMOylation sites. FASEB Journal, 2018, 32, 791.22.	0.2	0