Satoshi Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1265355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of acrolein from glycerol over silica-supported heteropoly acids. Catalysis Communications, 2007, 8, 1349-1353.	3.3	356
2	Glycerol hydrogenolysis into useful C3 chemicals. Applied Catalysis B: Environmental, 2016, 193, 75-92.	20.2	243
3	Origins of sp ³ C peaks in C _{1s} X-ray Photoelectron Spectra of Carbon Materials. Analytical Chemistry, 2016, 88, 6110-6114.	6.5	229
4	Basic properties of rare earth oxides. Applied Catalysis A: General, 2009, 356, 57-63.	4.3	215
5	Dehydration–hydrogenation of glycerol into 1,2-propanediol at ambient hydrogen pressure. Applied Catalysis A: General, 2009, 371, 60-66.	4.3	169
6	Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy. Journal of Materials Science, 2013, 48, 8171-8198.	3.7	147
7	Production of C4 and C5 alcohols from biomass-derived materials. Green Chemistry, 2016, 18, 2579-2597.	9.0	147
8	Vapor-phase reaction of polyols over copper catalysts. Applied Catalysis A: General, 2008, 347, 186-191.	4.3	146
9	Ketonization of carboxylic acids over CeO2-based composite oxides. Journal of Molecular Catalysis A, 2005, 227, 231-239.	4.8	143
10	Glycerol as a potential renewable raw material for acrylic acid production. Green Chemistry, 2017, 19, 3186-3213.	9.0	143
11	Direct Synthesis of Ethyl Acetate from Ethanol Carried Out under Pressure. Journal of Catalysis, 2002, 212, 207-215.	6.2	128
12	Ortho-Selective Methylation of Phenol Catalyzed by CeO2-MgO Prepared by Citrate Process. Journal of Catalysis, 1998, 178, 264-274.	6.2	112
13	Effective formation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst. Journal of Molecular Catalysis A, 2004, 216, 147-156.	4.8	107
14	Direct synthesis of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst. Applied Catalysis A: General, 2002, 237, 53-61.	4.3	97
15	Selective Dehydration of Alkanediols into Unsaturated Alcohols over Rare Earth Oxide Catalysts. ACS Catalysis, 2013, 3, 721-734.	11.2	97
16	Distinction between Surface and Bulk Oxidation of Cu through N2O Decomposition. Journal of Catalysis, 2000, 196, 195-199.	6.2	90
17	Synthesis of 3-pentanone from 1-propanol over CeO2–Fe2O3 catalysts. Applied Catalysis A: General, 2003, 252, 399-410.	4.3	86
18	Selective dehydration of diols to allylic alcohols catalyzed by ceria. Catalysis Communications, 2003, 4, 77-81.	3.3	81

#	Article	IF	CITATIONS
19	Ni/Mgo catalyst prepared using citric acid for hydrogenation of carbon dioxide. Applied Catalysis A: General, 1997, 158, 185-199.	4.3	78
20	Dehydration of 1,4-butanediol into 3-buten-1-ol catalyzed by ceria. Catalysis Communications, 2004, 5, 397-400.	3.3	78
21	Dehydration of butanediols over CeO2 catalysts with different particle sizes. Applied Catalysis A: General, 2006, 300, 50-57.	4.3	77
22	Dehydration of diols catalyzed by CeO2. Journal of Molecular Catalysis A, 2004, 221, 177-183.	4.8	76
23	Ortho-Selective Alkylation of Phenol with 1-Propanol Catalyzed by CeO2–MgO. Journal of Catalysis, 1999, 184, 180-188.	6.2	71
24	Dehydrogenative cyclization of 1,4-butanediol over copper-based catalyst. Journal of Molecular Catalysis A, 2004, 212, 197-203.	4.8	71
25	Dehydration of 1,4-butanediol over rare earth oxides. Applied Catalysis A: General, 2009, 356, 64-71.	4.3	71
26	Efficient production of 1,3-butadiene in the catalytic dehydration of 2,3-butanediol. Applied Catalysis A: General, 2015, 491, 163-169.	4.3	71
27	Surface structure and acidity of alumina-boria catalysts. Journal of Molecular Catalysis A, 1995, 104, 171-177.	4.8	70
28	Future Prospect of the Production of 1,3-Butadiene from Butanediols. Chemistry Letters, 2016, 45, 1036-1047.	1.3	69
29	Ortho-selective methylation of phenol over CeO2 catalyst. Applied Catalysis A: General, 1995, 133, L7-L10.	4.3	68
30	Surface-structure sensitivity of CeO2 for several catalytic reactions. Journal of Molecular Catalysis A, 2008, 279, 10-19.	4.8	67
31	Effect of Ag loading on Cu/Al2O3 catalyst in the production of 1,2-propanediol from glycerol. Applied Catalysis A: General, 2014, 475, 63-68.	4.3	66
32	Synthesis of 3-buten-1-ol from 1,4-butanediol over ZrO2 catalyst. Journal of Molecular Catalysis A, 2006, 243, 52-59.	4.8	65
33	Catalytic vapor-phase cyclization of 1,6-hexanediol into cyclopentanone. Catalysis Communications, 2003, 4, 411-416.	3.3	63
34	Dehydration of 2,3-butanediol into 3-buten-2-ol catalyzed by ZrO2. Catalysis Communications, 2014, 48, 1-4.	3.3	62
35	Catalytic performance of rare earth oxides in ketonization of acetic acid. Journal of Molecular Catalysis A, 2011, 346, 79-86.	4.8	61
36	Effect of diffusion in catalytic dehydration of alcohol over silica–alumina with continuous macropores. Journal of Catalysis, 2005, 229, 24-29.	6.2	60

#	Article	IF	CITATIONS
37	Catalytic reaction of 1,3-butanediol over rare earth oxides. Applied Catalysis A: General, 2007, 328, 109-116.	4.3	60
38	Catalytic reaction of 1,3-butanediol over solid acids. Journal of Molecular Catalysis A, 2006, 256, 106-112.	4.8	58
39	Selective Conversion of Glycerol into 1,2-Propanediol at Ambient Hydrogen Pressure. Chemistry Letters, 2009, 38, 560-561.	1.3	58
40	Catalytic and acidic properties of silica-alumina prepared by chemical vapour deposition. Applied Catalysis, 1990, 62, 73-84.	0.8	56
41	Synthesis of homoallyl alcohol from 1,4-butanediol over ZrO2 catalyst. Catalysis Communications, 2005, 6, 480-484.	3.3	54
42	Vapor-phase hydrogenation of levulinic acid to $\hat{1}^3$ -valerolactone over Cu-Ni bimetallic catalysts. Catalysis Communications, 2017, 97, 79-82.	3.3	52
43	Carbon Materials with Zigzag and Armchair Edges. ACS Applied Materials & Interfaces, 2018, 10, 40710-40739.	8.0	51
44	Dehydration of 1,4-butanediol over lanthanide oxides. Catalysis Communications, 2007, 8, 807-810.	3.3	50
45	Production of 1,3-butadiene from biomass-derived C4 alcohols. Fuel Processing Technology, 2020, 197, 106193.	7.2	50
46	Efficient formation of angelica lactones in a vapor-phase conversion of levulinic acid. Applied Catalysis A: General, 2016, 526, 62-69.	4.3	49
47	Vapor-phase hydrogenation of levulinic acid and methyl levulinate to Î ³ -valerolactone over non-noble metal-based catalysts. Molecular Catalysis, 2017, 437, 105-113.	2.0	48
48	Origins of peaks of graphitic and pyrrolic nitrogen in N1s X-ray photoelectron spectra of carbon materials: quaternary nitrogen, tertiary amine, or secondary amine?. Journal of Materials Science, 2021, 56, 15798-15811.	3.7	46
49	Silica–alumina catalysts prepared in sol–gel process of TEOS with organic additives. Physical Chemistry Chemical Physics, 2002, 4, 4830-4837.	2.8	45
50	Efficient production of propylene in the catalytic conversion of glycerol. Applied Catalysis B: Environmental, 2015, 174-175, 13-20.	20.2	44
51	PIO study on 1,3-butanediol dehydration over CeO2 (111) surface. Journal of Molecular Catalysis A, 2005, 231, 181-189.	4.8	43
52	Dehydration of 1,4-butanediol over supported rare earth oxide catalysts. Applied Catalysis A: General, 2009, 352, 66-73.	4.3	43
53	Dehydration of 1,3-butanediol over rare earth oxides. Applied Catalysis A: General, 2010, 377, 92-98.	4.3	43
54	Vapor-phase Dehydration of Glycerol into Hydroxyacetone over Silver Catalyst. Chemistry Letters, 2012, 41, 965-966.	1.3	43

#	Article	IF	CITATIONS
55	Effect of pore size on the liquid-phase pore diffusion of nickel nitrate. Physical Chemistry Chemical Physics, 2002, 4, 3800-3805.	2.8	42
56	Hydrogenation of γ-valerolactone to 1,4-pentanediol in a continuous flow reactor. Applied Catalysis A: General, 2017, 542, 289-295.	4.3	41
57	Catalytic dehydration of 1,2-propanediol into propanal. Applied Catalysis A: General, 2009, 366, 304-308.	4.3	39
58	Phase Separation in Sol–Gel Process of Alkoxideâ€Derived Silicaâ€Zirconia in the Presence of Polyethylene Oxide. Journal of the American Ceramic Society, 2001, 84, 1968-1976.	3.8	38
59	Vapor-phase dehydration of 1,5-pentanediol into 4-penten-1-ol. Applied Catalysis A: General, 2008, 334, 84-91.	4.3	38
60	Humidity Control Ability of Silica with Bimodal Pore Structures Prepared from Water Glass. Journal of the Ceramic Society of Japan, 2004, 112, 491-495.	1.3	37
61	Pyrolysis of Epoxidized Fullerenes Analyzed by Spectroscopies. Journal of Physical Chemistry C, 2014, 118, 7076-7084.	3.1	37
62	Preparation of Cu/SiO2 Catalyst by Solution Exchange of Wet Silica Gel. Journal of Sol-Gel Science and Technology, 2000, 19, 715-718.	2.4	36
63	Spectral change of simulated X-ray photoelectron spectroscopy from graphene to fullerene. Journal of Materials Science, 2015, 50, 6739-6747.	3.7	36
64	Selective dehydration of 2,3-butanediol to 3-buten-2-ol over ZrO2 modified with CaO. Applied Catalysis A: General, 2014, 487, 226-233.	4.3	35
65	Vapor-phase dehydration of C4 unsaturated alcohols to 1,3-butadiene. Applied Catalysis A: General, 2017, 531, 21-28.	4.3	35
66	Carbon materials with high pentagon density. Journal of Materials Science, 2021, 56, 2912-2943.	3.7	35
67	Sol–gel preparation of Ni/TiO2 catalysts with bimodal pore structures. Applied Catalysis A: General, 2010, 383, 66-72.	4.3	33
68	High-Surface-Area SiO2–ZrO2 Prepared by Depositing Silica on Zirconia in Aqueous Ammonia Solution. Journal of Catalysis, 2000, 196, 190-194.	6.2	32
69	Stable vapor-phase conversion of tetrahydrofurfuryl alcohol into 3,4-2H-dihydropyran. Applied Catalysis A: General, 2013, 453, 213-218.	4.3	32
70	Stable Cu-Ni/SiO 2 catalysts prepared by using citric acid-assisted impregnation for vapor-phase hydrogenation of levulinic acid. Molecular Catalysis, 2018, 454, 70-76.	2.0	32
71	Vapor-phase catalytic reactions of alcohols over bixbyite indium oxide. Journal of Molecular Catalysis A, 2009, 310, 166-173.	4.8	31
72	Catalytic Dehydration of 1,2-Propanediol into Propanal over Ag-Modified Silica–Alumina. Chemistry Letters, 2014, 43, 450-452.	1.3	30

#	Article	IF	CITATIONS
73	Vapor-Phase Synthesis of Symmetric Ketone from Alcohol over CeO2-Fe2O3Catalysts. Chemistry Letters, 2000, 29, 232-233.	1.3	29
74	Pore structure control in Ni/SiO2 catalysts with both macropores and mesopores. Microporous and Mesoporous Materials, 2007, 98, 107-114.	4.4	29
75	Synthesis of 3-buten-2-one from 4-hydroxy-2-butanone over anatase-TiO2 catalyst. Catalysis Communications, 2005, 6, 19-22.	3.3	28
76	Quantitative Analysis of Zigzag and Armchair Edges on Carbon Materials with and without Pentagons Using Infrared Spectroscopy. Analytical Chemistry, 2018, 90, 10724-10731.	6.5	28
77	Temperature-Programmed Desorption of Dimethylpyridine Adsorbed on Silica–Alumina Prepared by Chemical Vapor Deposition. Bulletin of the Chemical Society of Japan, 1991, 64, 1005-1007.	3.2	27
78	Characterization of sulfated zirconia prepared using reference catalysts and application to several model reactions. Applied Catalysis A: General, 2009, 360, 89-97.	4.3	27
79	Selective production of 1,3-butadiene in the dehydration of 1,4-butanediol over rare earth oxides. Applied Catalysis A: General, 2018, 562, 11-18.	4.3	27
80	Structural Study of Mesoporous Titania Prepared from Titanium Alkoxide and Carboxylic Acids. Journal of Sol-Gel Science and Technology, 2000, 19, 711-714.	2.4	26
81	Production of propanal from 1,2-propanediol over silica-supported WO 3 catalyst. Applied Catalysis A: General, 2014, 487, 234-241.	4.3	25
82	Measurement of the diffusion coefficient of nickel nitrate in wet silica gel using UV/VIS spectroscope equipped with a flow cell. Physical Chemistry Chemical Physics, 2000, 2, 1199-1204.	2.8	24
83	Synthesis of α-hydroxyketones from 1,2-diols over Cu-based catalyst. Catalysis Communications, 2005, 6, 607-610.	3.3	24
84	Formation of cyclopentanone from dimethyl hexanedioate over CeO2. Applied Catalysis A: General, 2006, 312, 175-180.	4.3	24
85	Vapor-phase catalytic dehydration of 1,4-butanediol to 3-buten-1-ol over modified ZrO 2 catalysts. Applied Catalysis A: General, 2017, 535, 9-16.	4.3	24
86	Vapor-phase catalytic dehydration of 2,3-butanediol to 3-buten-2-ol over ZrO2 modified with alkaline earth metal oxides. Applied Catalysis A: General, 2017, 530, 66-74.	4.3	24
87	Kinetic studies of liquid-phase acetal formation catalyzed by Keggin-type heteropolyacids. Journal of Molecular Catalysis A, 1996, 114, 209-216.	4.8	23
88	Dehydration of 1,5-pentanediol over rare earth oxides. Applied Catalysis A: General, 2012, 419-420, 41-48.	4.3	23
89	Acid–base concerted mechanism in the dehydration of 1,4-butanediol over bixbyite rare earth oxide catalysts. Catalysis Today, 2014, 226, 124-133.	4.4	23
90	Selective hydrogenation of γ-valerolactone to 2-methyltetrahydrofuran over Cu/Al2O3 catalyst. Applied Catalysis A: General, 2020, 590, 117309.	4.3	23

#	Article	IF	CITATIONS
91	Mesoporous MgO and Ni–MgO prepared by using carboxylic acids. Physical Chemistry Chemical Physics, 2003, 5, 4968-4973.	2.8	22
92	Efficient formation of γ-valerolactone in the vapor-phase hydrogenation of levulinic acid over Cu-Co/alumina catalyst. Catalysis Communications, 2020, 139, 105967.	3.3	22
93	Selective doping of nitrogen into carbon materials without catalysts. Journal of Materials Science, 2016, 51, 8900-8915.	3.7	20
94	Vapor-phase self-aldol condensation of butanal over Ag-modified TiO 2. Applied Catalysis A: General, 2016, 524, 8-16.	4.3	20
95	Bottom-up synthesis of highly soluble carbon materials. Journal of Materials Science, 2020, 55, 11808-11828.	3.7	19
96	Dehydrogenation of 1,3-butanediol over Cu-based catalyst. Journal of Molecular Catalysis A, 2007, 272, 164-168.	4.8	18
97	Oxygen Migration and Selective CO and CO2 Formation from Epoxidized Fullerenes. Journal of Physical Chemistry C, 2014, 118, 7085-7093.	3.1	18
98	Vapor-phase Catalytic Dehydration of 2,3-Butanediol into 3-Buten-2-ol over Sc2O3. Chemistry Letters, 2014, 43, 1773-1775.	1.3	18
99	Vapor-Phase Beckmann Rearrangement of Cyclohexanone Oxime over an HY Zeolite Catalyst Calcined at High Temperature. Bulletin of the Chemical Society of Japan, 1992, 65, 1486-1490.	3.2	17
100	Silica with Bimodal Pores for Solid Catalysts Prepared from Water Glass. Journal of Sol-Gel Science and Technology, 2004, 31, 373-376.	2.4	17
101	Dehydration of 1,5-pentanediol over bixbyite Sc2-xYbxO3 catalysts. Catalysis Communications, 2012, 27, 129-133.	3.3	17
102	Cyclodehydration of diethylene glycol over Ag-modified Al2O3 catalyst. Applied Catalysis A: General, 2015, 505, 422-430.	4.3	17
103	Vapor-phase catalytic dehydration of butanediols to unsaturated alcohols over yttria-stabilized zirconia catalysts. Applied Catalysis A: General, 2019, 575, 48-57.	4.3	17
104	Production of aldehydes from 1,2-alkanediols over silica-supported WO 3 catalyst. Applied Catalysis A: General, 2016, 526, 164-171.	4.3	16
105	Bimodal Porous Silica Prepared from Water Glass by Inducing Phase Separation Journal of the Ceramic Society of Japan, 2001, 109, 577-579.	1.3	15
106	Bromination of graphene with pentagonal, hexagonal zigzag and armchair, and heptagonal edges. Journal of Materials Science, 2015, 50, 5183-5190.	3.7	15
107	Preparation of Er2O3 Nanorod Catalyst without Using Organic Additive and Its Application to Catalytic Dehydration of 1,4-Butanediol. Chemistry Letters, 2012, 41, 593-594.	1.3	14
108	Efficient formation of nitriles in the vapor-phase catalytic dehydration of aldoximes. Green Chemistry, 2016, 18, 3389-3396.	9.0	14

#	Article	IF	CITATIONS
109	Amorphous SiO2 catalyst for vapor-phase aldol condensation of butanal. Applied Catalysis A: General, 2019, 570, 113-119.	4.3	14
110	Selective Production of 1,3-Butadiene from 1,3-Butanediol over Y2Zr2O7 Catalyst. Bulletin of the Chemical Society of Japan, 2021, 94, 1651-1658.	3.2	14
111	Vapor-Phase Dehydration of 1,3-butanediol over CeO2–ZrO2 Catalysts. Topics in Catalysis, 2009, 52, 609-617.	2.8	13
112	Synthesis of 3-buten-1-ol from 1,4-butanediol over indium oxide. Applied Catalysis A: General, 2010, 383, 134-140.	4.3	13
113	Vapor-phase hydrogenation of levulinic acid to Î ³ -valerolactone over Cu-Ni alloy catalysts. Applied Catalysis A: General, 2021, 616, 118093.	4.3	13
114	Infrared spectroscopy of graphene nanoribbons and aromatic compounds with sp3C–H (methyl or) Tj ETQq0 () 0 ₃ gBT /(Dverlock 10 Tf
115	Gas-Flow Resistance in Continuous Macropores in Silica Rods Prepared by Freezing Transitional Structures of Phase Separation. Journal of the Ceramic Society of Japan, 2004, 112, 99-103.	1.3	12
116	Vapor-phase catalytic dehydration of terminal diols. Catalysis Today, 2011, 164, 419-424.	4.4	12
117	Dehydration of Biomass-Derived Butanediols over Rare Earth Zirconate Catalysts. Catalysts, 2020, 10, 1392.	3.5	12
118	Brominated positions on graphene nanoribbon analyzed by infrared spectroscopy. Journal of Materials Science, 2020, 55, 10522-10542.	3.7	12
119	Diffusion coefficient of ketones in liquid media within mesopores. Physical Chemistry Chemical Physics, 2003, 5, 2476-2480.	2.8	11
120	Structural analysis of carbon materials by X-ray photoelectron spectroscopy using computational chemistry. Tanso, 2015, 2015, 181-189.	0.1	11
121	Vapor-phase intramolecular aldol condensation of 2,5-hexanedione to 3-methylcyclopent-2-enone over ZrO2-supported Li2O catalyst. Catalysis Communications, 2017, 92, 105-108.	3.3	11
122	Carbonization of phloroglucinol promoted by heteropoly acids. Journal of Materials Science, 2021, 56, 2944-2960.	3.7	11
123	Effect of Si Content on Diffusion Coefficient of Nickel Nitrate in Wet Silica Gel Journal of the Ceramic Society of Japan, 2001, 109, 840-845.	1.3	10
124	Liquid-phase hydrogenation of ketones in the mesopores of nickel catalysts. Physical Chemistry Chemical Physics, 2002, 4, 3537-3542.	2.8	10
125	Solvent-Free Diels–Alder Reaction in a Closed Batch System. Bulletin of the Chemical Society of Japan, 2013, 86, 276-282.	3.2	10
126	Dehydration of 3-methyl-1,3-butanediol over Al2O3 modified with carbon. Applied Catalysis A: General, 2014, 475, 147-154.	4.3	10

#	Article	IF	CITATIONS
127	Bottom-up synthesis of carbon materials with high pyridinic-nitrogen content from dibenzacridine isomers with zigzag and armchair edges. Journal of Materials Science, 2022, 57, 7503-7530.	3.7	10
128	Adsorptive interaction between 1,5-pentanediol and MgO-modified ZrO2 catalyst in the vapor-phase dehydration to produce 4-penten-1-ol. Applied Catalysis A: General, 2017, 546, 96-102.	4.3	9
129	Structural and Catalytic Properties of Silica-Coated Alumina. Bulletin of the Chemical Society of Japan, 2006, 79, 649-655.	3.2	8
130	Stable Vapor-phase Catalytic Conversion of Pinacolone into 2,3-Dimethyl-1,3-butadiene. Chemistry Letters, 2012, 41, 831-833.	1.3	8
131	Advantages of using Cu/SiO2 catalyst for vapor-phase dehydrogenation of 1-decanol into decanal. Applied Catalysis A: General, 2019, 582, 117109.	4.3	8
132	Bottom-up synthesis of oxygen-containing carbon materials using a Lewis acid catalyst. Journal of Materials Science, 2021, 56, 15698-15717.	3.7	8
133	Control of coke deposition in solid acid catalysis through the doping of transition metal combined with the assistance of H2: A review. Applied Catalysis A: General, 2021, 626, 118340.	4.3	8
134	Dehydration of 2,3-butanediol to produce 1,3-butadiene over Sc2O3 catalyst prepared through hydrothermal aging. Molecular Catalysis, 2021, 516, 111996.	2.0	8
135	Synthesis of Monolithic Zeolites with Macropores. Journal of the Ceramic Society of Japan, 2006, 114, 421-424.	1.3	7
136	Strength and elasticity of bimodal porous silica prepared from water glass. Journal of Sol-Gel Science and Technology, 2007, 43, 275-282.	2.4	7
137	Highly Active Ni/SiO2 Catalyst Prepared Through Citric Acid-Assisted Impregnation for the Hydrogenation of Acetoin to 2,3-Butanediol. Bulletin of the Chemical Society of Japan, 2022, 95, 443-450.	3.2	7
138	Efficient Production of 1,3-Butadiene from 1,4-Butanediol over Yb2O3 Catalyst Prepared through Hydrothermal Aging. Bulletin of the Chemical Society of Japan, 2022, 95, 506-512.	3.2	7
139	Thermal Properties of Monolithic Silica and Silica-Zirconia with Bimodal Pore Structures. Journal of the Ceramic Society of Japan, 2005, 113, 92-96.	1.3	6
140	In Situ Spectroscopic and Computational Studies on a MnO ₂ –CuO Catalyst for Use in Volatile Organic Compound Decomposition. ACS Omega, 2017, 2, 7424-7432.	3.5	6
141	lsomerization of Crotyl Alcohol Catalyzed by V ₂ O ₅ -modified Silica. Chemistry Letters, 2021, 50, 1635-1638.	1.3	6
142	Bending strength of silica gel with bimodal pores. Materials Research Bulletin, 2007, 42, 523-531.	5.2	5
143	Dehydration of 5-amino-1-pentanol over rare earth oxides. Applied Catalysis A: General, 2016, 517, 73-80.	4.3	5
144	Vapor-phase synthesis of piperidine over SiO2 catalysts. Catalysis Communications, 2018, 110, 42-45.	3.3	5

#	Article	IF	CITATIONS
145	Bromination Reactivity of Oxygen-Terminated Edges of Graphene. Journal of Nanoscience and Nanotechnology, 2021, 21, 3004-3009.	0.9	5
146	Effects of Preparation Conditions on Pore Structure and Crystal Phase of Mesoporous Zirconia Journal of the Ceramic Society of Japan, 2003, 111, 16-23.	1.3	3
147	Fabrication of Gas Chromatography Glass Capillary Columns with Silica Gel Layer on the Inner Surface Utilizing Sol-Gel Phase Separation. Journal of the Ceramic Society of Japan, 2005, 113, 634-636.	1.3	3
148	Macropore Formation of Silica Gel in the Presence of Sodium Dodecyl Sulfate by Inducing Phase Separation in Alcohol-free Aqueous Solution. Journal of the Ceramic Society of Japan, 2007, 115, 882-887.	1.1	3
149	Catalytic dehydration of 1,3-butanediol over oxygen-defected fluorite Yb2Zr2O7. Molecular Catalysis, 2019, 473, 110399.	2.0	3
150	Vapor-phase dehydration of 1,4-butanediol to 1,3-butadiene over Y2Zr2O7 catalyst. Molecular Catalysis, 2021, 514, 111853.	2.0	3
151	Silica-Coated Metal Oxide Powders with High Surface Area Journal of the Ceramic Society of Japan, 2002, 110, 1097-1099.	1.3	2
152	Liquid-Phase Cyclodimerization of 1,3-Butadiene in a Closed Batch System. Bulletin of the Chemical Society of Japan, 2013, 86, 529-533.	3.2	2
153	Enhanced catalytic performance of H3PO4/SiO2 by doping WO3 and Ag for the vapor-phase dehydration of 1,2-propanediol to form propanal. Applied Catalysis A: General, 2022, 633, 118509.	4.3	2
154	Hydrogenation of Biomass-derived γ-Valerolactone to Form 1,4-Pentanediol over Co/ZrO2 Catalyst. Chemistry Letters, 2022, 51, 395-398.	1.3	2
155	Preparation of Porous Titania Film from Precursor Solution Containing Titanium Alkoxide and Stearic Acid Journal of the Ceramic Society of Japan, 2001, 109, 712-714.	1.3	1
156	Spherical Silica Gel Beads with Macropores Prepared from Water Glass. Journal of the Ceramic Society of Japan, 2006, 114, 282-285.	1.3	1
157	Phase separation in the system with sodium silicate and sodium dodecyl sulfate under acidic conditions. Journal of the Ceramic Society of Japan, 2010, 118, 295-299.	1.1	1
158	Vapor-phase isomerization of 3-pentenal over amorphous SiO2 catalyst. Applied Catalysis A: General, 2019, 576, 65-73.	4.3	1
159	Preparative chemistry of calcia-stabilized ZrO2 for vapor-phase dehydration of 1,4-butanediol. Molecular Catalysis, 2021, 503, 111343.	2.0	1
160	Vapor-phase Organic Reactions Catalyzed by Rare Earth Oxides: Dehydration of Diols. Hyomen Kagaku, 2011, 32, 76-80.	0.0	0