Daniel Krappmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1264113/publications.pdf Version: 2024-02-01

		34105	30922
107	10,885	52	102
papers	citations	h-index	g-index
111	111	111	12553
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	MALT1 Is a Targetable Driver of Epithelial-to-Mesenchymal Transition in Claudin-Low, Triple-Negative Breast Cancer. Molecular Cancer Research, 2022, 20, 373-386.	3.4	7
2	Expanding the Clinical and Immunological Phenotypes and Natural History of MALT1 Deficiency. Journal of Clinical Immunology, 2022, 42, 634-652.	3.8	12
3	A20 and ABIN-1 cooperate in balancing CBM complex-triggered NF-κB signaling in activated T cells. Cellular and Molecular Life Sciences, 2022, 79, 112.	5.4	11
4	Phosphorylation of serine-893 in CARD11 suppresses the formation and activity of the CARD11-BCL10-MALT1 complex in T and B cells. Science Signaling, 2022, 15, eabk3083.	3.6	3
5	Optimized CRISPR-Cas9-based Strategy for Complex Gene Targeting in Murine Embryonic Stem Cells for Germline Transmission. Bio-protocol, 2022, 12, .	0.4	0
6	Human immune disorder associated with homozygous hypomorphic mutation affecting MALT1B splice variant. Journal of Allergy and Clinical Immunology, 2021, 147, 775-778.e8.	2.9	13
7	Methods to Study CARD11-BCL10-MALT1 Dependent Canonical NF-κB Activation in Jurkat T Cells. Methods in Molecular Biology, 2021, 2366, 125-143.	0.9	1
8	A patent review of MALT1 inhibitors (2013-present). Expert Opinion on Therapeutic Patents, 2021, 31, 1079-1096.	5.0	15
9	TRAF6 prevents fatal inflammation by homeostatic suppression of MALT1 protease. Science Immunology, 2021, 6, eabh2095.	11.9	17
10	Use of Non-Natural Amino Acids for the Design and Synthesis of a Selective, Cell-Permeable MALT1 Activity-Based Probe. Journal of Medicinal Chemistry, 2020, 63, 3996-4004.	6.4	8
11	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	9.7	71
12	MALT1 Phosphorylation Controls Activation of T Lymphocytes and Survival of ABC-DLBCL Tumor Cells. Cell Reports, 2019, 29, 873-888.e10.	6.4	22
13	Regulation of the endosomal SNX27-retromer by OTULIN. Nature Communications, 2019, 10, 4320.	12.8	34
14	Regulation of S1PR2 by the EBV oncogene LMP1 in aggressive ABCâ€subtype diffuse large Bâ€cell lymphoma. Journal of Pathology, 2019, 248, 142-154.	4.5	8
15	Bcl10-controlled Malt1 paracaspase activity is key for the immune suppressive function of regulatory T cells. Nature Communications, 2019, 10, 2352.	12.8	68
16	Hectd3 promotes pathogenic Th17 lineage through Stat3 activation and Malt1 signaling in neuroinflammation. Nature Communications, 2019, 10, 701.	12.8	57
17	GSK3β modulates NF-κB activation and RelB degradation through site-specific phosphorylation of BCL10. Scientific Reports, 2018, 8, 1352.	3.3	21
18	S1PR1 drives a feedforward signalling loop to regulate BATF3 and the transcriptional programme of Hodgkin lymphoma cells. Leukemia, 2018, 32, 214-223.	7.2	25

#	Article	IF	CITATIONS
19	BCL10-CARD11 Fusion Mimics an Active CARD11 Seed That Triggers Constitutive BCL10 Oligomerization and Lymphocyte Activation. Frontiers in Immunology, 2018, 9, 2695.	4.8	12
20	Molecular architecture and regulation of BCL10-MALT1 filaments. Nature Communications, 2018, 9, 4041.	12.8	47
21	MALT1 activation by TRAF6 needs neither BCL10 nor CARD11. Biochemical and Biophysical Research Communications, 2018, 506, 48-52.	2.1	12
22	Targeting TRAF6 E3 ligase activity with a small-molecule inhibitor combats autoimmunity. Journal of Biological Chemistry, 2018, 293, 13191-13203.	3.4	52
23	BCL10 – Bridging CARDs to Immune Activation. Frontiers in Immunology, 2018, 9, 1539.	4.8	46
24	Immunoproteasome subunit deficiency has no influence on the canonical pathway of NF-κB activation. Molecular Immunology, 2017, 83, 147-153.	2.2	29
25	B-cell receptor–driven MALT1 activity regulates MYC signaling in mantle cell lymphoma. Blood, 2017, 129, 333-346.	1.4	57
26	A Linear Diubiquitin-Based Probe for Efficient and Selective Detection of the Deubiquitinating Enzyme OTULIN. Cell Chemical Biology, 2017, 24, 1299-1313.e7.	5.2	41
27	Inactivation of the putative ubiquitin-E3 ligase PDLIM2 in classical Hodgkin and anaplastic large cell lymphoma. Leukemia, 2017, 31, 602-613.	7.2	14
28	YOD1/TRAF6 association balances p62-dependent IL-1 signaling to NF-κB. ELife, 2017, 6, .	6.0	48
29	Canonical NFâ€̂ºB signaling in hepatocytes acts as a tumorâ€suppressor in hepatitis B virus surface antigenâ€driven hepatocellular carcinoma by controlling the unfolded protein response. Hepatology, 2016, 63, 1592-1607.	7.3	51
30	Inhibition of Canonical NF-κB Signaling by a Small Molecule Targeting NEMO-Ubiquitin Interaction. Scientific Reports, 2016, 6, 18934.	3.3	26
31	Oncogenic CARMA1 couples NF-κB and β-catenin signaling in diffuse large B-cell lymphomas. Oncogene, 2016, 35, 4269-4281.	5.9	44
32	Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome. Biological Chemistry, 2016, 397, 1315-1333.	2.5	59
33	Alternative splicing of MALT1 controls signalling and activation of CD4+ T cells. Nature Communications, 2016, 7, 11292.	12.8	94
34	Psoriasis mutations disrupt CARD14 autoinhibition promoting BCL10-MALT1-dependent NF-κB activation. Biochemical Journal, 2016, 473, 1759-1768.	3.7	62
35	Mechanisms of NF-ήB deregulation in lymphoid malignancies. Seminars in Cancer Biology, 2016, 39, 3-14.	9.6	24
36	Synthesis and Evaluation of Macrocyclic Peptide Aldehydes as Potent and Selective Inhibitors of the 20S Proteasome. ACS Medicinal Chemistry Letters, 2016, 7, 250-255.	2.8	10

#	Article	IF	CITATIONS
37	Development of new Malt1 inhibitors and probes. Bioorganic and Medicinal Chemistry, 2016, 24, 3312-3329.	3.0	18
38	B-Cell Receptor Driven MALT1 Activity Regulates MYC Signaling in Mantle Cell Lymphoma. Blood, 2016, 128, 611-611.	1.4	0
39	Activity-Based Probes for Detection of Active MALT1 Paracaspase in Immune Cells and Lymphomas. Chemistry and Biology, 2015, 22, 129-138.	6.0	36
40	In Vitro Detection of NEMO–Ubiquitin Binding Using DELFIA and Microscale Thermophoresis Assays. Methods in Molecular Biology, 2015, 1280, 311-320.	0.9	2
41	Detection of Recombinant and Cellular MALT1 Paracaspase Activity. Methods in Molecular Biology, 2015, 1280, 239-246.	0.9	2
42	Combinatorial BTK and MALT1 inhibition augments killing of CD79 mutant diffuse large B cell lymphoma. Oncotarget, 2015, 6, 42232-42242.	1.8	31
43	Pharmacological inhibition of MALT1 protease activity protects mice in a mouse model of multiple sclerosis. Journal of Neuroinflammation, 2014, 11, 124.	7.2	76
44	Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies. Oncogene, 2014, 33, 5655-5665.	5.9	112
45	Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation. Nature Immunology, 2014, 15, 1079-1089.	14.5	238
46	MALT 1 protease: equilibrating immunity versus tolerance. EMBO Journal, 2014, 33, 2740-2742.	7.8	7
47	AIP augments CARMA1-BCL10-MALT1 complex formation to facilitate NF-κB signaling upon T cell activation. Cell Communication and Signaling, 2014, 12, 49.	6.5	21
48	Structural Analysis of Phenothiazine Derivatives as Allosteric Inhibitors of the MALT1 Paracaspase. Angewandte Chemie - International Edition, 2013, 52, 10384-10387.	13.8	70
49	Progressive stages of mitochondrial destruction caused by cell toxic bile salts. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2121-2133.	2.6	62
50	The E3 Ligase Parkin Maintains Mitochondrial Integrity by Increasing Linear Ubiquitination of NEMO. Molecular Cell, 2013, 49, 908-921.	9.7	183
51	OTULIN Antagonizes LUBAC Signaling by Specifically Hydrolyzing Met1-Linked Polyubiquitin. Cell, 2013, 153, 1312-1326.	28.9	395
52	Shaping oncogenic NF-Î $^{\circ}$ B activity in the nucleus. Blood, 2013, 122, 2146-2147.	1.4	4
53	MALT1 paracaspase: a unique protease involved in B-cell lymphomagenesis. International Journal of Hematologic Oncology, 2013, 2, 409-417.	1.6	2
54	Strukturelle Analyse von Phenothiazinâ€Derivaten als allosterische Inhibitoren der MALT1â€Paracaspase. Angewandte Chemie, 2013, 125, 10575-10579.	2.0	0

#	Article	IF	CITATIONS
55	Measurement of Endogenous MALT1 Activity. Bio-protocol, 2013, 3, .	0.4	1
56	A20 and CYLD Do Not Share Significant Overlapping Functions during B Cell Development and Activation. Journal of Immunology, 2012, 189, 4437-4443.	0.8	24
57	Pharmacologic Inhibition of MALT1 Protease by Phenothiazines as a Therapeutic Approach for the Treatment of Aggressive ABC-DLBCL. Cancer Cell, 2012, 22, 825-837.	16.8	216
58	Attacking MALT1 for ABC-DLBCL therapy. Oncotarget, 2012, 3, 1489-1490.	1.8	1
59	Dlg3 Trafficking and Apical Tight Junction Formation Is Regulated by Nedd4 and Nedd4-2 E3ÂUbiquitin Ligases. Developmental Cell, 2011, 21, 479-491.	7.0	48
60	Dephosphorylation of Carma1 by PP2A negatively regulates T-cell activation. EMBO Journal, 2011, 30, 594-605.	7.8	60
61	NF-κB Essential Modulator (NEMO) Interaction with Linear and Lys-63 Ubiquitin Chains Contributes to NF-κB Activation. Journal of Biological Chemistry, 2011, 286, 26107-26117.	3.4	102
62	The Ca2+-dependent Phosphatase Calcineurin Controls the Formation of the Carma1-Bcl10-Malt1 Complex during T Cell Receptor-induced NF-κB Activation. Journal of Biological Chemistry, 2011, 286, 7522-7534.	3.4	89
63	Critical role of PI3K signaling for NF-κB–dependent survival in a subset of activated B-cell–like diffuse large B-cell lymphoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 272-277.	7.1	127
64	Signals from the Nucleus: Activation of NF-κB by Cytosolic ATM in the DNA Damage Response. Science Signaling, 2011, 4, pe2.	3.6	56
65	Ubiquitin Conjugation and Deconjugation in NF-κB Signaling. Sub-Cellular Biochemistry, 2010, 54, 88-99.	2.4	10
66	A20 Negatively Regulates T Cell Receptor Signaling to NF-κB by Cleaving Malt1 Ubiquitin Chains. Journal of Immunology, 2009, 182, 7718-7728.	0.8	222
67	Inhibition of MALT1 protease activity is selectively toxic for activated B cell–like diffuse large B cell lymphoma cells. Journal of Experimental Medicine, 2009, 206, 2313-2320.	8.5	195
68	Role of Oxidative Stress in Ultrafine Particle–induced Exacerbation of Allergic Lung Inflammation. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 984-991.	5.6	90
69	Inhibition of MALT1 protease activity is selectively toxic for activated B cell–like diffuse large B cell lymphoma cells. Journal of Experimental Medicine, 2009, 206, 2851-2851.	8.5	2
70	COP9 signalosome controls the Carma1–Bcl10–Malt1 complex upon Tâ€cell stimulation. EMBO Reports, 2009, 10, 642-648.	4.5	31
71	The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nature Cell Biology, 2009, 11, 1411-1420.	10.3	211
72	Inhibition of MALT1 Protease Activity Is Selectively Toxic for Activated B CellÃ,AÌ,–Like Diffuse Large B Cell Lymphoma Cells Blood, 2009, 114, 1271-1271.	1.4	0

#	Article	IF	CITATIONS
73	Distinct isocomplexes of the TRAPP trafficking factor coexist inside human cells. FEBS Letters, 2008, 582, 3729-3733.	2.8	22
74	Parkin Mediates Neuroprotection through Activation of IÂB Kinase/Nuclear Factor-ÂB Signaling. Journal of Neuroscience, 2007, 27, 1868-1878.	3.6	171
75	CARD-Bcl10-Malt1 Signalosomes: Missing Link to NF-κB. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe21.	3.9	60
76	MALT1 directs B cell receptor–induced canonical nuclear factor-κB signaling selectively to the c-Rel subunit. Nature Immunology, 2007, 8, 984-991.	14.5	78
77	Malt1 ubiquitination triggers NF-lºB signaling upon T-cell activation. EMBO Journal, 2007, 26, 4634-4645.	7.8	189
78	Essential Role for ll®B Kinase l2 in Remodeling Carma1-Bcl10-Malt1 Complexes upon T Cell Activation. Molecular Cell, 2006, 23, 13-23.	9.7	117
79	Controlling NF-Î ^{e} B activation in T cells by costimulatory receptors. Cell Death and Differentiation, 2006, 13, 834-842.	11.2	50
80	A pervasive role of ubiquitin conjugation in activation and termination of lκB kinase pathways. EMBO Reports, 2005, 6, 321-326.	4.5	105
81	Viral targeting of the interferon-β-inducing Traf family member-associated NF-κB activator (TANK)-binding kinase-1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13640-13645.	7.1	102
82	Degradation of Bcl10 Induced by T-Cell Activation Negatively Regulates NF-κB Signaling. Molecular and Cellular Biology, 2004, 24, 3860-3873.	2.3	135
83	The lήB Kinase Complex and NF-ήB Actas Master Regulators of Lipopolysaccharide-Induced Gene Expressionand Control Subordinate Activation ofAP-1. Molecular and Cellular Biology, 2004, 24, 6488-6500.	2.3	152
84	Requirement of Hsp90 activity for IκB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-κB activation. Oncogene, 2004, 23, 5378-5386.	5.9	208
85	Lymphotoxin and lipopolysaccharide induce NFâ€̂₽Bâ€p52 generation by a coâ€ŧranslational mechanism. EMBO Reports, 2003, 4, 82-87.	4.5	118
86	Purification and Characterization of the Human Elongator Complex. Journal of Biological Chemistry, 2002, 277, 3047-3052.	3.4	230
87	Nuclear Factor κB–dependent Gene Expression Profiling of Hodgkin's Disease Tumor Cells, Pathogenetic Significance, and Link to Constitutive Signal Transducer and Activator of Transcription 5a Activity. Journal of Experimental Medicine, 2002, 196, 605-617.	8.5	244
88	Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappaB. EMBO Journal, 2002, 21, 4104-4113.	7.8	323
89	Tissue-Specific Expression of a Splicing Mutation in the Gene Causes Familial Dysautonomia. American Journal of Human Genetics, 2001, 68, 598-605.	6.2	558
90	Constitutive NF-κB maintains high expression of a characteristic gene network, including CD40, CD86, and a set of antiapoptotic genes in Hodgkin/Reed-Sternberg cells. Blood, 2001, 97, 2798-2807.	1.4	246

#	Article	IF	CITATIONS
91	In vitro susceptibility to TRAIL-induced apoptosis of acute leukemia cells in the context of TRAIL receptor gene expression and constitutive NF-κB activity. Leukemia, 2001, 15, 921-928.	7.2	80
92	B-Cell Receptor- and Phorbol Ester-Induced NF-κB and c-Jun N-Terminal Kinase Activation in B Cells Requires Novel Protein Kinase C's. Molecular and Cellular Biology, 2001, 21, 6640-6650.	2.3	78
93	Shared Pathways of ll̂ºB Kinase-Induced SCF l̂²TrCP -Mediated Ubiquitination and Degradation for the NF-l̂ºB Precursor p105 and ll̂ºBl̂±. Molecular and Cellular Biology, 2001, 21, 1024-1035.	2.3	133
94	NF- κ B and the innate immune response. Current Opinion in Immunology, 2000, 12, 52-58.	5.5	323
95	Transcription factor NF-κB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia, 2000, 14, 399-402.	7.2	252
96	The lκB Kinase (IKK) Complex Is Tripartite and Contains IKKγ but Not IKAP as a Regular Component. Journal of Biological Chemistry, 2000, 275, 29779-29787.	3.4	105
97	Overexpression of I Kappa B Alpha Without Inhibition of NF-κB Activity and Mutations in the I Kappa B Alpha Gene in Reed-Sternberg Cells. Blood, 1999, 94, 3129-3134.	1.4	249
98	NF-κB Function in Growth Control: Regulation of Cyclin D1 Expression and G ₀ /G ₁ -to-S-Phase Transition. Molecular and Cellular Biology, 1999, 19, 2690-2698.	2.3	745
99	Molecular mechanisms of constitutive NF-κB/Rel activation in Hodgkin/Reed-Sternberg cells. Oncogene, 1999, 18, 943-953.	5.9	265
100	NF-kappa B p105 is a target of Ikappa B kinases and controls signal induction of Bcl-3-p50 complexes. EMBO Journal, 1999, 18, 4766-4778.	7.8	184
101	Overexpression of I Kappa B Alpha Without Inhibition of NF-κB Activity and Mutations in the I Kappa B Alpha Gene in Reed-Sternberg Cells. Blood, 1999, 94, 3129-3134.	1.4	21
102	Signal-dependent degradation of IÂBÂ is mediated by an inducible destruction box that can be transferred to NF-ÂB, Bcl-3 or p53. Nucleic Acids Research, 1998, 26, 1724-1730.	14.5	18
103	Regulation of NF-κB activity by lκBα and lκBβ Stability. Immunobiology, 1997, 198, 3-13.	1.9	38
104	Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells Journal of Clinical Investigation, 1997, 100, 2961-2969.	8.2	699
105	The NF-κB/Rel and IκB gene families: mediators of immune response and inflammation. Journal of Molecular Medicine, 1996, 74, 749-769.	3.9	235
106	Different mechanisms control signal-induced degradation and basal turnover of the NF-kappaB inhibitor IkappaB alpha in vivo EMBO Journal, 1996, 15, 6716-6726.	7.8	178
107	High-level nuclear NF-kappa B and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood, 1996, 87, 4340-4347.	1.4	309