Florian Rüker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1263621/publications.pdf

Version: 2024-02-01

69 3,104 27 55
papers citations h-index g-index

71 71 71 3371 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Trispecific antibodies produced from mAb2 pairs by controlled Fab-arm exchange. Biological Chemistry, 2022, .	2.5	6
2	Efficient spontaneous site-selective cysteine-mediated toxin attachment within a structural loop of antibodies. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130155.	2.4	1
3	Construction of Yeast Display Libraries for Selection of Antigen-Binding Variants of Large Extracellular Loop of CD81, a Major Surface Marker Protein of Extracellular Vesicles. Methods in Molecular Biology, 2022, 2491, 561-592.	0.9	O
4	Bispecific mAb2 Antibodies Targeting CD59 Enhance the Complement-Dependent Cytotoxicity Mediated by Rituximab. International Journal of Molecular Sciences, 2022, 23, 5208.	4.1	3
5	Bispecific antibodies with Fab-arms featuring exchanged antigen-binding constant domains. Biochemistry and Biophysics Reports, 2021, 26, 100959.	1.3	5
6	An engineered CD81â€based combinatorial library for selecting recombinant binders to cell surface proteins: Laminin binding CD81 enhances cellular uptake of extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12139.	12.2	9
7	Binding Characteristic of Various Antibody Formats Against Aflatoxins. ACS Omega, 2021, 6, 25258-25268.	3.5	10
8	Bispecific T-Cell Engagers Targeting Membrane-Bound IgE. Biomedicines, 2021, 9, 1568.	3.2	1
9	A Tetravalent Biparatopic Antibody Causes Strong HER2 Internalization and Inhibits Cellular Proliferation. Life, 2021, 11, 1157.	2.4	2
10	Constant domain-exchanged Fab enables specific light chain pairing in heterodimeric bispecific SEED-antibodies. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140250.	2.3	6
11	Stabilization of soluble highâ€affinity Tâ€cell receptor with deÂnovo disulfide bonds. FEBS Letters, 2020, 594, 477-490.	2.8	6
12	Beyond affinity: selection of antibody variants with optimal biophysical properties and reduced immunogenicity from mammalian display libraries. MAbs, 2020, 12, 1829335.	5.2	38
13	Methods for Construction of Yeast Display Libraries of Four-Domain T-Cell Receptors. Methods in Molecular Biology, 2020, 2070, 223-248.	0.9	2
14	Engineering of Surface Proteins in Extracellular Vesicles for Tissue-Specific Targeting. , 2019, , .		4
15	Yeast Surface Display and Cell Sorting of Antigen-Binding Fc Fragments. Methods in Molecular Biology, 2019, 1923, 287-308.	0.9	2
16	An antibody with Fab-constant domains exchanged for a pair of CH3 domains. PLoS ONE, 2018, 13, e0195442.	2.5	11
17	Stabilization of the CD81 Large Extracellular Loop with De Novo Disulfide Bonds Improves Its Amenability for Peptide Grafting. Pharmaceutics, 2018, 10, 138.	4.5	9
18	Enhancement and Analysis of Human Antiaflatoxin B1 (AFB1) scFv Antibody–Ligand Interaction Using Chain Shuffling. Journal of Agricultural and Food Chemistry, 2018, 66, 5713-5722.	5.2	20

#	Article	IF	Citations
19	Fcab-HER2 Interaction: a Ménage à Trois. Lessons from X-Ray and Solution Studies. Structure, 2017, 25, 878-889.e5.	3.3	29
20	Novel CH1:CL interfaces that enhance correct light chain pairing in heterodimeric bispecific antibodies. Protein Engineering, Design and Selection, 2017, 30, 685-696.	2.1	29
21	Designing Fcabs: well-expressed and stable high affinity antigen-binding Fc fragments. Protein Engineering, Design and Selection, 2017, 30, 657-671.	2.1	12
22	Element labeling of antibody fragments for ICP-MS based immunoassays. Journal of Analytical Atomic Spectrometry, 2016, 31, 2330-2337.	3.0	7
23	lgG Fc Fragment as a Scaffold for Development of Targeted Therapeutics. Current Pharmaceutical Biotechnology, 2016, 17, 1315-1323.	1.6	3
24	In vivo and in vitro activity of an immunoglobulin Fc fragment (Fcab) with engineered Herâ€2/neu binding sites. Biotechnology Journal, 2014, 9, 844-851.	3.5	14
25	Construction of pHâ€sensitive Her2â€binding lgG1â€Fc by directed evolution. Biotechnology Journal, 2014, 9, 1013-1022.	3.5	30
26	Creating stable stem regions for loop elongation in Fcabs â€" Insights from combining yeast surface display, in silico loop reconstruction and molecular dynamics simulations. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1530-1540.	2.3	3
27	Directed evolution of Her2/neu-binding IgG1-Fc for improved stability and resistance to aggregation by using yeast surface display. Protein Engineering, Design and Selection, 2013, 26, 255-265.	2.1	34
28	Stability assessment on a library scale: a rapid method for the evaluation of the commutability and insertion of residues in C-terminal loops of the CH3 domains of IgG1-Fc. Protein Engineering, Design and Selection, 2013, 26, 675-682.	2.1	20
29	Significant Impact of Single N-Glycan Residues on the Biological Activity of Fc-based Antibody-like Fragments. Journal of Biological Chemistry, 2012, 287, 24313-24319.	3.4	26
30	Stabilisation of the Fc Fragment of Human IgG1 by Engineered Intradomain Disulfide Bonds. PLoS ONE, 2012, 7, e30083.	2.5	51
31	A C-terminal interdomain disulfide bond significantly stabilizes the Fc fragment of IgG. Archives of Biochemistry and Biophysics, 2012, 526, 181-187.	3.0	24
32	Correlation between CD16a binding and immuno effector functionality of an antigen specific immunoglobulin Fc fragment (Fcab). Archives of Biochemistry and Biophysics, 2012, 526, 154-158.	3.0	10
33	Guest Editor's introduction – Antibody Engineering. Archives of Biochemistry and Biophysics, 2012, 526, 85-86.	3.0	1
34	Directed evolution of stabilized IgG1-Fc scaffolds by application of strong heat shock to libraries displayed on yeast. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 542-549.	2.3	50
35	Construction of a Stability Landscape of the CH3 Domain of Human IgG1 by Combining Directed Evolution with High Throughput Sequencing. Journal of Molecular Biology, 2012, 423, 397-412.	4.2	48
36	Integrin binding human antibody constant domainsâ€"Probing the C-terminal structural loops for grafting the RGD motif. Journal of Biotechnology, 2011, 155, 193-202.	3.8	21

#	Article	IF	CITATIONS
37	Introducing antigen-binding sites in structural loops of immunoglobulin constant domains: Fc fragments with engineered HER2/neu-binding sites and antibody properties. Protein Engineering, Design and Selection, 2010, 23, 289-297.	2.1	113
38	Engineering of Non-CDR Loops in Immunoglobulin Domains. , 2009, , 231-240.		2
39	Influence of the Unusual Covalent Adduct on the Kinetics and Formation of Radical Intermediates in Synechocystis Catalase Peroxidase. Journal of Biological Chemistry, 2004, 279, 46082-46095.	3.4	57
40	The Iron Superoxide Dismutase from the Filamentous Cyanobacterium Nostoc PCC 7120. Journal of Biological Chemistry, 2004, 279, 44384-44393.	3.4	43
41	Structure of the Ochratoxin A Binding Site within Human Serum Albumin. Journal of Physical Chemistry B, 2004, 108, 16960-16964.	2.6	20
42	The catalytic role of the distal site asparagine-histidine couple in catalase-peroxidases. FEBS Journal, 2003, 270, 1006-1013.	0.2	23
43	Distal Site Aspartate Is Essential in the Catalase Activity of Catalase-Peroxidasesâ€. Biochemistry, 2003, 42, 5292-5300.	2.5	56
44	Expression of TIMP-1 in Pichia pastoris. Selection of an anti-TIMP-1 specific single-chain Fv antibody from a large non-immune library. Clinica Chimica Acta, 2003, 327, 171-179.	1.1	6
45	An ELISA for the detection of TIMP-1 based on recombinant single chain Fv fusion proteins. Clinica Chimica Acta, 2003, 335, 49-57.	1.1	2
46	Total Conversion of Bifunctional Catalase-Peroxidase (KatG) to Monofunctional Peroxidase by Exchange of a Conserved Distal Side Tyrosine. Journal of Biological Chemistry, 2003, 278, 20185-20191.	3.4	73
47	Biochemical Characterization of a Membrane-bound Manganese-containing Superoxide Dismutase from the CyanobacteriumAnabaena PCC 7120. Journal of Biological Chemistry, 2002, 277, 43615-43622.	3.4	39
48	The Atomic Structure of Human Methemalbumin at $1.9\ \tilde{A}$ Biochemical and Biophysical Research Communications, 2002, 291, 813-819.	2.1	308
49	Interaction of ochratoxin A with human serum albumin. Binding sites localized by competitive interactions with the native protein and its recombinant fragments. Chemico-Biological Interactions, 2002, 141, 275-293.	4.0	60
50	Engineering the proximal heme cavity of catalase-peroxidase. Journal of Inorganic Biochemistry, 2002, 91, 78-86.	3.5	25
51	Catalase-Peroxidase from Synechocystis Is Capable of Chlorination and Bromination Reactions. Biochemical and Biophysical Research Communications, 2001, 287, 682-687.	2.1	50
52	Five recombinant fragments of human serum albuminâ€"tools for the characterization of the warfarin binding site. Protein Science, 2000, 9, 1455-1465.	7.6	119
53	Effect of Distal Cavity Mutations on the Formation of Compound I in Catalase-Peroxidases. Journal of Biological Chemistry, 2000, 275, 22854-22861.	3.4	74
54	Conformational Transitions of the Three Recombinant Domains of Human Serum Albumin Depending on pH. Journal of Biological Chemistry, 2000, 275, 3042-3050.	3.4	407

#	Article	IF	CITATIONS
55	Nucleotide sequence analysis, overexpression in Escherichia coli and kinetic characterization of Anacystis nidulans catalase-peroxidase**The novel sequence data reported here will appear in the NCBI GenBank under the accession number AF197161 Biochimie, 2000, 82, 211-219.	2.6	21
56	Catalase-Peroxidase from the Cyanobacterium Synechocystis PCC 6803: Cloning, Overexpression in Escherichia coli, and Kinetic Characterization. Biological Chemistry, 1999, 380, 1087-96.	2.5	44
57	The Three Recombinant Domains of Human Serum Albumin. Journal of Biological Chemistry, 1999, 274, 29303-29310.	3.4	365
58	Spectral and Kinetic Studies of the Oxidation of Monosubstituted Phenols and Anilines by RecombinantSynechocystisCatalaseâ^Peroxidase Compound lâ€. Biochemistry, 1999, 38, 10480-10488.	2.5	47
59	Molecular Characterization of Five Neutralizing Anti-HIV Type 1 Antibodies: Identification of Nonconventional D Segments in the Human Monoclonal Antibodies 2G12 and 2F5. AIDS Research and Human Retroviruses, 1998, 14, 1115-1128.	1.1	103
60	Interaction between a Fab fragment against gp41 of human immunodeficiency virus 1 and its peptide epitope: characterization using a peptide epitope library and molecular modeling. Protein Engineering, Design and Selection, 1995, 8, 471-479.	2.1	27
61	Threeâ€Dimensional structure of <i>schistosoma japonicum</i> glutathione <i>s</i> àâ€transferase fused with a sixâ€amino acid conserved neutralizing epitope of gp41 from hiv. Protein Science, 1994, 3, 2233-2244.	7.6	169
62	Cloning and Expression of an HIV-1 Specific Single-Chain FvRegion Fused to Escherichia coli Alkaline Phosphatase. Annals of the New York Academy of Sciences, 1991, 646, 106-114.	3.8	18
63	Expression of a Human Monoclonal Anti-HIV-1 Antibody in CHO Cells. Annals of the New York Academy of Sciences, 1991, 646, 212-219.	3.8	4
64	Engineered gene for Escherichia colialkaline phosphatase for the construction of translational fusions. Nucleic Acids Research, 1990, 18, 1069-1069.	14.5	16
65	Nucleotide sequences of the cDNAs encoding the V-regions of H- and L-chains of a human monoclonal antibody specific to HIV-1 - gp41. Nucleic Acids Research, 1990, 18, 4927-4927.	14.5	48
66	Crystallization of the Fab from a human monoclonal antibody against gp 41 of human immunodeficiency virus type I. Journal of Molecular Biology, 1990, 216, 511-512.	4.2	18
67	Efficient transformation of Agrobacteriumspp. by eletroporation. Nucleic Acids Research, 1989, 17, 6747-6747.	14.5	194
68	Stopping the DNA polymerase activity at a specific site with a dideoxyoligonucleotide: selective labelling of single stranded circular DNA. Nucleic Acids Research, 1989, 17, 8384-8384.	14.5	0
69	Electroporative gene transfer (electrotransfection): A method for strain improvement of animal cells. Bioelectrochemistry, 1987, 17, 253-257.	1.0	5