
Florian P Schiestl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1262854/publications.pdf Version: 2024-02-01

FLODIAN D SCHIESTI

#	Article	IF	CITATIONS
1	Hyperbolic odorant mixtures as a basis for more efficient signaling between flowering plants and bees. PLoS ONE, 2022, 17, e0270358.	2.5	3
2	Generalized olfactory detection of floral volatiles in the highly specialized Greya-Lithophragma nursery pollination system. Arthropod-Plant Interactions, 2021, 15, 209-221.	1.1	3
3	Do floral and ecogeographic isolation allow the coâ€occurrence of two ecotypes of <i>Anacamptis papilionacea</i> (Orchidaceae)?. Ecology and Evolution, 2021, 11, 9917-9931.	1.9	4
4	Combining biotechnology and evolution for understanding the mechanisms of pollinator attraction. Current Opinion in Biotechnology, 2021, 70, 213-219.	6.6	9
5	Pollinator behaviour and resource limitation maintain honest floral signalling. Functional Ecology, 2021, 35, 2536-2549.	3.6	8
6	Floral signals evolve in a predictable way under artificial and pollinator selection in Brassica rapa. BMC Evolutionary Biology, 2020, 20, 127.	3.2	5
7	Herbivory and pollination impact on the evolution of herbivoreâ€induced plasticity in defense and floral traits. Evolution Letters, 2020, 4, 556-569.	3.3	6
8	Evolution of Floral Fragrance Is Compromised by Herbivory. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	14
9	Floral Odors Can Interfere With the Foraging Behavior of Parasitoids Searching for Hosts. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	17
10	Chemical and Functional Complexity in Flower Fragrance. Chimia, 2020, 74, 820.	0.6	1
11	The role of volatiles in plant communication. Plant Journal, 2019, 100, 892-907.	5.7	180
12	Rapid plant evolution driven by the interaction of pollination and herbivory. Science, 2019, 364, 193-196.	12.6	122
13	Emergence of a floral colour polymorphism by pollinator-mediated overdominance. Nature Communications, 2019, 10, 63.	12.8	45
14	Trans-generational inheritance of herbivory-induced phenotypic changes in Brassica rapa. Scientific Reports, 2018, 8, 3536.	3.3	15
15	Crab spiders impact floral-signal evolution indirectly through removal of florivores. Nature Communications, 2018, 9, 1367.	12.8	30
16	Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and ecoâ€evolutionary implications. New Phytologist, 2018, 220, 739-749.	7.3	101
17	Realâ€ŧime evolution supports a unique trajectory for generalized pollination*. Evolution; International Journal of Organic Evolution, 2018, 72, 2653-2668.	2.3	21
18	The effect of pollinators and herbivores on selection for floral signals: a case study in Brassica rapa. Evolutionary Ecology, 2017, 31, 285-304.	1.2	54

#	Article	IF	CITATIONS
19	The Sexual Advantage of Looking, Smelling, and Tasting Good: The Metabolic Network that Produces Signals for Pollinators. Trends in Plant Science, 2017, 22, 338-350.	8.8	67
20	The effects of becoming taller: direct and pleiotropic effects of artificial selection on plant height in <i>Brassica rapa</i> . Plant Journal, 2017, 89, 1009-1019.	5.7	31
21	Real-time divergent evolution in plants driven by pollinators. Nature Communications, 2017, 8, 14691.	12.8	217
22	Innate Receiver Bias: Its Role in the Ecology and Evolution of Plant–Animal Interactions. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 585-603.	8.3	19
23	Floral scent and species divergence in a pair of sexually deceptive orchids. Ecology and Evolution, 2017, 7, 6023-6034.	1.9	19
24	Herbivore-Induced DNA Demethylation Changes Floral Signalling and Attractiveness to Pollinators in Brassica rapa. PLoS ONE, 2016, 11, e0166646.	2.5	33
25	The molecular bases of floral scent evolution under artificial selection: insights from a transcriptome analysis in Brassica rapa. Scientific Reports, 2016, 6, 36966.	3.3	17
26	Heritability of floral volatiles and pleiotropic responses to artificial selection in <i>Brassica rapa</i> . New Phytologist, 2016, 209, 1208-1219.	7.3	66
27	Why Do Floral Perfumes Become Different? Region-Specific Selection on Floral Scent in a Terrestrial Orchid. PLoS ONE, 2016, 11, e0147975.	2.5	67
28	Herbivory affects male and female reproductive success differently in dioecious <i>Silene latifolia</i> . Entomologia Experimentalis Et Applicata, 2015, 157, 60-67.	1.4	9
29	Floral isolation is the major reproductive barrier between a pair of rewarding orchid sister species. Journal of Evolutionary Biology, 2015, 28, 117-129.	1.7	37
30	Are tetraploids more successful? Floral signals, reproductive success and floral isolation in mixed-ploidy populations of a terrestrial orchid. Annals of Botany, 2015, 115, 263-273.	2.9	44
31	Herbivory Increases Fruit Set in Silene latifolia: A Consequence of Induced Pollinator-Attracting Floral Volatiles?. Journal of Chemical Ecology, 2015, 41, 622-630.	1.8	34
32	Floral volatiles interfere with plant attraction of parasitoids: ontogeny-dependent infochemical dynamics in Brassica rapa. BMC Ecology, 2015, 15, 17.	3.0	41
33	Ecology and evolution of floral volatileâ€mediated information transfer in plants. New Phytologist, 2015, 206, 571-577.	7.3	150
34	Bees use honest floral signals as indicators of reward when visiting flowers. Ecology Letters, 2015, 18, 135-143.	6.4	165
35	Pollen transfer efficiency and its effect on inflorescence size in deceptive pollination strategies. Plant Biology, 2015, 17, 545-550.	3.8	17
97	How to get the best deal Elife 2015 4	6.0	1

How to get the best deal. ELife, 2015, 4, .

6.0 1

#	Article	IF	CITATIONS
37	Correlation analyses between volatiles and glucosinolates show no evidence for chemical defense signaling in Brassica rapa. Frontiers in Ecology and Evolution, 2014, 2, .	2.2	14
38	Genic rather than genomeâ€wide differences between sexually deceptive <i><scp>O</scp>phrys</i> orchids with different pollinators. Molecular Ecology, 2014, 23, 6192-6205.	3.9	52
39	Eugenol synthase genes in floral scent variation in Gymnadenia species. Functional and Integrative Genomics, 2014, 14, 779-788.	3.5	28
40	Alien interference: disruption of infochemical networks by invasive insect herbivores. Plant, Cell and Environment, 2014, 37, 1854-1865.	5.7	55
41	Herbivory and floral signaling: phenotypic plasticity and tradeoffs between reproduction and indirect defense. New Phytologist, 2014, 203, 257-266.	7.3	139
42	Floral adaptation to local pollinator guilds in a terrestrial orchid. Annals of Botany, 2014, 113, 289-300.	2.9	77
43	Do Flower Color and Floral Scent of Silene Species affect Host Preference of Hadena bicruris, a Seed-Eating Pollinator, under Field Conditions?. PLoS ONE, 2014, 9, e98755.	2.5	15
44	Pollinator shifts between <i><scp>O</scp>phrys sphegodes</i> populations: might adaptation to different pollinators drive population divergence?. Journal of Evolutionary Biology, 2013, 26, 2197-2208.	1.7	36
45	The promise of genomics in the study of plant-pollinator interactions. Genome Biology, 2013, 14, 207.	8.8	29
46	Pollinator-mediated evolution of floral signals. Trends in Ecology and Evolution, 2013, 28, 307-315.	8.7	504
47	Transcriptome and Proteome Data Reveal Candidate Genes for Pollinator Attraction in Sexually Deceptive Orchids. PLoS ONE, 2013, 8, e64621.	2.5	46
48	The Genetic Basis of Pollinator Adaptation in a Sexually Deceptive Orchid. PLoS Genetics, 2012, 8, e1002889.	3.5	46
49	Minority cytotypes in European populations of the Gymnadenia conopsea complex (Orchidaceae) greatly increase intraspecific and intrapopulation diversity. Annals of Botany, 2012, 110, 977-986.	2.9	39
50	Identification of white campion (Silene latifolia) guaiacol O-methyltransferase involved in the biosynthesis of veratrole, a key volatile for pollinator attraction. BMC Plant Biology, 2012, 12, 158.	3.6	20
51	Pollinator-Driven Speciation in Sexually Deceptive Orchids. International Journal of Ecology, 2012, 2012, 1-9.	0.8	42
52	Specific ant-pollination in an alpine orchid and the role of floral scent in attracting pollinating ants. Alpine Botany, 2012, 122, 1-9.	2.4	26
53	THE EVOLUTION OF FLORAL SCENT AND OLFACTORY PREFERENCES IN POLLINATORS: COEVOLUTION OR PRE-EXISTING BIAS?. Evolution; International Journal of Organic Evolution, 2012, 66, 2042-2055.	2.3	115
54	Chemical analysis of incense smokes used in Shaxi, Southwest China: A novel methodological approach in ethnobotany. Journal of Ethnopharmacology, 2011, 138, 212-218.	4.1	9

#	Article	IF	CITATIONS
55	Animal pollination and speciation in plants: general mechanisms and examples from the orchids. , 2011, , 263-278.		2
56	Continuum Between Ritual and Medicinal Use of Plants: Smoke Analysis of Ritual Plants from Southwest China. Chimia, 2011, 65, 438.	0.6	1
57	Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environmental Microbiology, 2011, 13, 3047-3058.	3.8	343
58	FLORAL ISOLATION IS THE MAIN REPRODUCTIVE BARRIER AMONG CLOSELY RELATED SEXUALLY DECEPTIVE ORCHIDS. Evolution; International Journal of Organic Evolution, 2011, 65, 2606-2620.	2.3	112
59	Integrating past and present studies on Ophrys pollination - a comment on Bradshaw et al Botanical Journal of the Linnean Society, 2011, 165, 329-335.	1.6	48
60	Phenotypic selection on floral scent: trade-off between attraction and deterrence?. Evolutionary Ecology, 2011, 25, 237-248.	1.2	90
61	Stearoyl-acyl carrier protein desaturases are associated with floral isolation in sexually deceptive orchids. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5696-5701.	7.1	84
62	Hybrid floral scent novelty drives pollinator shift in sexually deceptive orchids. BMC Evolutionary Biology, 2010, 10, 103.	3.2	86
63	Pollination: Sexual Mimicry Abounds. Current Biology, 2010, 20, R1020-R1022.	3.9	10
64	Pollinator specificity, floral odour chemistry and the phylogeny of Australian sexually deceptive <i>Chiloglottis</i> orchids: implications for pollinatorâ€driven speciation. New Phytologist, 2010, 188, 437-450.	7.3	188
65	The evolution of floral scent and insect chemical communication. Ecology Letters, 2010, 13, 643-656.	6.4	365
66	Pollination Efficiency and the Evolution of Specialized Deceptive Pollination Systems. American Naturalist, 2010, 175, 98-105.	2.1	91
67	Floral evolution as a figment of the imagination of pollinators. Trends in Ecology and Evolution, 2010, 25, 382-383.	8.7	12
68	On the roles of colour and scent in a specialized floral mimicry system. Annals of Botany, 2009, 104, 1077-1084.	2.9	67
69	The discovery of 2,5-dialkylcyclohexan-1,3-diones as a new class of natural products. Proceedings of the United States of America, 2009, 106, 8877-8882.	7.1	70
70	Pollinator convergence and the nature of species' boundaries in sympatric Sardinian Ophrys (Orchidaceae). Annals of Botany, 2009, 104, 497-506.	2.9	70
71	How to be an attractive male: floral dimorphism and attractiveness to pollinators in a dioecious plant. BMC Evolutionary Biology, 2009, 9, 190.	3.2	58
72	The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Functional Ecology, 2009, 23, 841-851.	3.6	306

#	Article	IF	CITATIONS
73	Pollinator attraction in <i>Anacamptis papilionacea</i> (Orchidaceae): a food or a sex promise?. Plant Species Biology, 2009, 24, 109-114.	1.0	13
74	Floral Isolation, Specialized Pollination, and Pollinator Behavior in Orchids. Annual Review of Entomology, 2009, 54, 425-446.	11.8	206
75	Variation of Insect Attracting Odor in Endophytic Epichloë Fungi: Phylogenetic Constrains Versus Host Influence. Journal of Chemical Ecology, 2008, 34, 772-782.	1.8	20
76	Ecological role of volatiles produced by Epichloë: differences in antifungal toxicity. FEMS Microbiology Ecology, 2008, 64, 307-316.	2.7	34
77	Role of odour compounds in the attraction of gamete vectors in endophytic <i> Epichloë</i> fungi. New Phytologist, 2008, 178, 401-411.	7.3	44
78	Floral odour and reproductive isolation in two species of <i>Silene</i> . Journal of Evolutionary Biology, 2008, 21, 111-121.	1.7	119
79	Evolution of sexual mimicry in the orchid subtribe orchidinae: the role of preadaptations in the attraction of male bees as pollinators. BMC Evolutionary Biology, 2008, 8, 27.	3.2	88
80	Molecular mechanisms of floral mimicry in orchids. Trends in Plant Science, 2008, 13, 228-235.	8.8	60
81	The evolution of imperfect floral mimicry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7484-7488.	7.1	91
82	Variability in Floral Scent in Rewarding and Deceptive Orchids: The Signature of Pollinator-imposed Selection?. Annals of Botany, 2007, 100, 757-765.	2.9	89
83	Floral Scent in Foodâ€Deceptive Orchids: Species Specificity and Sources of Variability. Plant Biology, 2007, 9, 720-729.	3.8	62
84	Population differentiation in female sex pheromone and male preferences in a solitary bee. Behavioral Ecology and Sociobiology, 2007, 61, 811-821.	1.4	54
85	Odour and colour polymorphism in the food-deceptive orchid Dactylorhiza romana. Plant Systematics and Evolution, 2007, 267, 37-45.	0.9	51
86	Evolution of â€~pollinator'- attracting signals in fungi. Biology Letters, 2006, 2, 401-404.	2.3	65
87	Postpollination Changes in Floral Odor in Silene latifolia: Adaptive Mechanisms for Seed-Predator Avoidance?. Journal of Chemical Ecology, 2006, 32, 1855-1860.	1.8	56
88	Floral Scent Emission and Pollination Syndromes: Evolutionary Changes from Food to Sexual Deception. International Journal of Plant Sciences, 2006, 167, 1197-1204.	1.3	22
89	DOES SELECTION ON FLORAL ODOR PROMOTE DIFFERENTIATION AMONG POPULATIONS AND SPECIES OF THE SEXUALLY DECEPTIVE ORCHID GENUS OPHRYS?. Evolution; International Journal of Organic Evolution, 2005, 59, 1449-1463.	2.3	140
90	On the success of a swindle: pollination by deception in orchids. Die Naturwissenschaften, 2005, 92, 255-264.	1.6	303

#	Article	IF	CITATIONS
91	Floral scent emission and pollinator attraction in two species of Gymnadenia (Orchidaceae). Oecologia, 2005, 142, 564-575.	2.0	168
92	Floral Odor Variation in Two Heterostylous Species of Primula. Journal of Chemical Ecology, 2005, 31, 1223-1228.	1.8	23
93	Cuticular Hydrocarbons as Sex Pheromone of the Bee Colletes cunicularius and the Key to its Mimicry by the Sexually Deceptive Orchid, Ophrys exaltata. Journal of Chemical Ecology, 2005, 31, 1765-1787.	1.8	113
94	DOES SELECTION ON FLORAL ODOR PROMOTE DIFFERENTIATION AMONG POPULATIONS AND SPECIES OF THE SEXUALLY DECEPTIVE ORCHID GENUS OPHRYS?. Evolution; International Journal of Organic Evolution, 2005, 59, 1449.	2.3	7
95	Evidence for pollinator sharing in Mediterranean nectar-mimic orchids: absence of premating barriers?. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1271-1278.	2.6	88
96	Does selection on floral odor promote differentiation among populations and species of the sexually deceptive orchid genus Ophrys?. Evolution; International Journal of Organic Evolution, 2005, 59, 1449-63.	2.3	44
97	Pollinator attractiveness increases with distance from flowering orchids. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S212-4.	2.6	21
98	Chemical communication in the sexually deceptive orchid genus Cryptostylis. Botanical Journal of the Linnean Society, 2004, 144, 199-205.	1.6	45
99	Monoterpenes and Epicuticular Waxes Help Female Autumn Gum Moth Differentiate Between Waxy and Glossy Eucalyptus and Leaves of Different Ages. Journal of Chemical Ecology, 2004, 30, 1117-1142.	1.8	56
100	A mark-recapture study of male Colletes cunicularius bees: implications for pollination by sexual deception. Behavioral Ecology and Sociobiology, 2004, 56, 579-584.	1.4	37
101	Identification, synthesis and activity of sex pheromone gland components of the autumn gum moth (Lepidoptera: Geometridae), a defoliator of Eucalyptus. Chemoecology, 2004, 14, 217.	1.1	8
102	Odor compound detection in male euglossine bees. Journal of Chemical Ecology, 2003, 29, 253-257.	1.8	70
103	Floral evolution and pollinator mate choice in a sexually deceptive orchid. Journal of Evolutionary Biology, 2003, 17, 67-75.	1.7	45
104	Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 517-522.	2.6	215
105	The Chemistry of Sexual Deception in an Orchid-Wasp Pollination System. Science, 2003, 302, 437-438.	12.6	298
106	A PHYLOGENETIC STUDY OF POLLINATOR CONSERVATISM AMONG SEXUALLY DECEPTIVE ORCHIDS. Evolution; International Journal of Organic Evolution, 2002, 56, 888.	2.3	4
107	How an orchid harms its pollinator. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1529-1532.	2.6	75
108	Do changes in floral odor cause speciation in sexually deceptive orchids?. Plant Systematics and Evolution, 2002, 234, 111-119.	0.9	120

#	Article	IF	CITATIONS
109	A PHYLOGENETIC STUDY OF POLLINATOR CONSERVATISM AMONG SEXUALLY DECEPTIVE ORCHIDS. Evolution; International Journal of Organic Evolution, 2002, 56, 888-898.	2.3	92
110	Post-pollination emission of a repellent compound in a sexually deceptive orchid: a new mechanism for maximising reproductive success?. Oecologia, 2001, 126, 531-534.	2.0	136
111	EVOLUTION OF REPRODUCTIVE STRATEGIES IN THE SEXUALLY DECEPTIVE ORCHID OPHRYS SPHEGODES: HOW DOES FLOWER-SPECIFIC VARIATION OF ODOR SIGNALS INFLUENCE REPRODUCTIVE SUCCESS?. Evolution; International Journal of Organic Evolution, 2000, 54, 1995-2006.	2.3	191
112	Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): patterns of hydrocarbons as the key mechanism for pollination by sexual deception. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2000, 186, 567-574.	1.6	164
113	Post-mating odor in females of the solitary bee, Andrena nigroaenea (Apoidea, Andrenidae), inhibits male mating behavior. Behavioral Ecology and Sociobiology, 2000, 48, 303-307.	1.4	70
114	EVOLUTION OF REPRODUCTIVE STRATEGIES IN THE SEXUALLY DECEPTIVE ORCHID OPHRYS SPHEGODES: HOW DOES FLOWER-SPECIFIC VARIATION OF ODOR SIGNALS INFLUENCE REPRODUCTIVE SUCCESS?. Evolution; International Journal of Organic Evolution, 2000, 54, 1995.	2.3	63
115	Orchid pollination by sexual swindle. Nature, 1999, 399, 421-421.	27.8	398
116	Variation of Floral Scent Emission and Postpollination Changes in Individual Flowers of Ophrys sphegodes. Journal of Chemical Ecology, 1997, 23, 2881-2895.	1.8	118