Konrad Seppelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1262175/publications.pdf

Version: 2024-02-01

623734 552781 28 659 14 26 citations g-index h-index papers 29 29 29 732 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrochemical, Spectroscopic, and DFT Study of C ₆₀ 60Csub>60CF _{3C/sub>)<i>C_{nc/sub>(i> Frontier Orbitals (<i>nc/i> = 2â^18):  The Link between Double Bonds in Pentagons and Reduction Potentials. Journal of the American Chemical Society, 2007, 129, 11551-11568.</i>}</i>}	13.7	145
2	Synthesis, Structure, and 19F NMR Spectra of 1,3,7,10,14,17,23,28,31,40-C60(CF3)10. Journal of the American Chemical Society, 2005, 127, 8362-8375.	13.7	105
3	Variable-Temperature 19F NMR and Theoretical Study of 1,9- and 1,7-C60F(CF3) and Cs- and C1-C60F17(CF3):Â Hindered CF3Rotation and Through-SpaceJFFCoupling. Journal of the American Chemical Society, 2005, 127, 11497-11504.	13.7	53
4	Halogenated Benzene Cation Radicals. Chemistry - A European Journal, 2012, 18, 6644-6654. Comparison of the Coordination of B ₁₂ F ₁₂ Coupsilon (Sub)	3.3	47
5	B ₁₂ Cl ₁₂ ^{2a€~} , and B ₁₂ H ₁₂ ^{2a€~} to Na ⁺ in the Solid State: Crystal Structures and Thermal Behavior of Na ₂ (B ₁₂ F ₁₂), Na ₂ (B ₂ O) ₄ (B ₁₂ F <sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub>F<sub< td=""><td>4.0</td><td>34</td></sub<></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	4.0	34
6	Exceptional Structural Compliance of the B ₁₂ F ₁₂ ^{2â€"} Superweak Anion. Inorganic Chemistry, 2017, 56, 4072-4083.	4.0	26
7	Structures of M2(SO2)6B12F12 (M = Ag or K) and Ag2(H2O)4B12F12: Comparison of the Coordination of SO2 versus H2O and of B12F122– versus Other Weakly Coordinating Anions to Metal Ions in the Solid State. Inorganic Chemistry, 2016, 55, 12254-12262.	4.0	24
8	Jahn–Teller Effect in the B ₁₂ F ₁₂ Radical Anion and Energetic Preference of an Octahedral B ₆ (BF ₂) ₆ Cluster Structure over an Icosahedral Structure for the Elusive Neutral B ₁₂ F ₁₂ . Inorganic Chemistry, 2015, 54, 11563-11566.	4.0	21
9	Chemical tailoring of fullerene acceptors: synthesis, structures and electrochemical properties of perfluoroisopropylfullerenes. Chemical Communications, 2011, 47, 875-877.	4.1	20
10	High-temperature and photochemical syntheses of C60 and C70 fullerene derivatives with linear perfluoroalkyl chains. Journal of Fluorine Chemistry, 2010, 131, 1198-1212.	1.7	19
11	Trifluoromethylated Phenanthroline Ligands Reduce Excited-State Distortion in Homoleptic Copper(I) Complexes. Inorganic Chemistry, 2020, 59, 2781-2790.	4.0	18
12	Anion packing, hole filling, and HF solvation in A2(HF)nB12F12 and K2(HF)TiF6 (A=K, Cs). Journal of Fluorine Chemistry, 2013, 145, 118-127.	1.7	16
13	Copper Causes Regiospecific Formation of C ₄ F ₈ â€Containing Sixâ€Membered Rings and their Defluorination/Aromatization to C ₄ F ₄ â€Containing Rings in Triphenylene/1,4â€C ₄ F ₈ 1 ₂ Reactions. Chemistry - A European Journal, 2016, 22, 874-877.	3.3	16
14	Photobleaching dynamics in small molecule <i>vs.</i> Âpolymer organic photovoltaic blends with 1,7-bis-trifluoromethylfullerene. Journal of Materials Chemistry A, 2018, 6, 4623-4628.	10.3	16
15	Latent Porosity in Alkali-Metal M2B12F12 Salts: Structures and Rapid Room-Temperature Hydration/Dehydration Cycles. Inorganic Chemistry, 2017, 56, 12023-12041.	4.0	13
16	Experimental and DFT Studies of the Electronâ€Withdrawing Ability of Perfluoroalkyl (R F) Groups: Electron Affinities of PAH(R F) n Increase Significantly with Increasing R F Chain Length. Chemistry - A European Journal, 2018, 24, 1441-1447.	3.3	13
17	Triplet Excitons in Pentacene Are Intrinsically Difficult to Dissociate via Charge Transfer. Journal of Physical Chemistry C, 2020, 124, 26153-26164.	3.1	12
18	Manifestations of Weak O–H···F Hydrogen Bonding in M(H ₂ O) _{<i>n</i>)/sub>(B₁₂F₁₂) Salt Hydrates: Unusually Sharp Fourier Transform Infrared ν(OH) Bands and Latent Porosity (M = Mg–Ba, Co, Ni, Zn). Inorganic Chemistry, 2018, 57, 14983-15000.}	4.0	11

#	Article	IF	CITATIONS
19	Understanding Polyarene Trifluoromethylation with Hot CF 3 Radicals Using Corannulene. European Journal of Organic Chemistry, 2018, 2018, 4233-4245.	2.4	8
20	Structure of (SiEt3)2(B12F12). Another example of R3Si F E bridge bonding (E=B, Al, Si). Journal of Fluorine Chemistry, 2018, 212, 107-111.	1.7	8
21	PAH/PAH(CF 3) n Donor/Acceptor Chargeâ€Transfer Complexes in Solution and in Solidâ€State Coâ€Crystals. Chemistry - A European Journal, 2019, 25, 13547-13565.	3.3	7
22	Steric and electronic effects of CF3 conformations in acene(CF3) derivatives. Journal of Fluorine Chemistry, 2019, 221, 1-7.	1.7	7
23	Variation of excited-state dynamics in trifluoromethyl functionalized C ₆₀ fullerenes. Physical Chemistry Chemical Physics, 2016, 18, 22937-22945. Hydrated Metal Ion Salts of the Weakly Coordinating Fluoroanions PF ₆ ^{–⟨ sup⟩,}	2.8	5
24	TiF ₆ ^{2â€"} , B ₁₂ F ₁₂ ^{2â€"} , Ga(C ₂ F ₅) ₄ ^{â€"} , B(3,5-C ₆ H ₃) ₄ >sub>4>sub>6) ₆ . Al(OC(CF ₃) ₄ . In Search of the Weakest HOHÂ-Â-Â-F	4.0	5
25	Hydrogen Bonds. Inorganic Chemistry, 2019, 58, 14900-14911. Structures of 1,1′,3,3′-tetra(2-methyl-2-nonyl)ferrocenium(1+) salts of CB11H12â⁻¹, B12F122â⁻¹, BF4â⁻¹, PF6 ClO3â⁻¹. Journal of Organometallic Chemistry, 2018, 865, 128-137.	â^', and 1.8	4
26	Room-Temperature FTIR Spectra of the Cyclic S4 (H2O)4 Cluster in Crystalline Li2(H2O)4(B12F12): Observation of B and E ν(OH) Bands and Coupling of Strong O–H···O and Weak O–H···F Vibrations. Journal of Physical Chemistry A, 2019, 123, 9781-9790.	2.5	3
27	Molecular insights into photostability of fluorinated organic photovoltaic blends: role of fullerene electron affinity and donor–acceptor miscibility. Sustainable Energy and Fuels, 2020, 4, 5721-5731.	4.9	2
28	Anaerobic vs. aerobic preparation of silicon nanoparticles by stirred media milling. The effects of dioxygen, milling solvent, and milling time on particle size, surface area, crystallinity, surface/near-surface composition, and reactivity. RSC Advances, 2016, 6, 112370-112380.	3.6	1