and Ilona Kretzschmar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1262134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface tension anomaly observed for chemically-modified Janus particles at the air/water interface. Journal of Colloid and Interface Science, 2020, 558, 95-99.	9.4	35
2	Effect of Orientation and Wetting Properties on the Behavior of Janus Particles at the Air–Water Interface. ACS Applied Materials & Interfaces, 2020, 12, 5128-5135.	8.0	6
3	Frenkel excitons in heat-stressed supramolecular nanocomposites enabled by tunable cage-like scaffolding. Nature Chemistry, 2020, 12, 1157-1164.	13.6	17
4	Exploring the Correlation between Stability, Fluxionality, and Absorption Spectra of Ultrasmall CdSe Clusters: A Computational Study. Journal of Physical Chemistry C, 2020, 124, 12672-12681.	3.1	2
5	Preface to the Advances in Active Materials Special Issue. Langmuir, 2020, 36, 6859-6860.	3.5	1
6	Pt-SiO ₂ Janus Particles and the Water/Oil Interface: A Competition between Motility and Thermodynamics. Langmuir, 2020, 36, 6880-6887.	3.5	24
7	Self-assembly of magnetic colloids with radially shifted dipoles. Soft Matter, 2020, 16, 2460-2472.	2.7	8
8	Broadband chiral hybrid plasmon modes on nanofingernail substrates. Nanoscale, 2020, 12, 3827-3833.	5.6	2
9	Floor- or Ceiling-Sliding for Chemically Active, Gyrotactic, Sedimenting Janus Particles. Langmuir, 2020, 36, 7133-7147.	3.5	20
10	Kinetics of Formation of Quantum Dot Solvent <i>N</i> -Oleoylmorpholine. Industrial & Engineering Chemistry Research, 2020, 59, 8562-8570.	3.7	0
11	Impact of Surface Amphiphilicity on the Interfacial Behavior of Janus Particle Layers under Compression. Langmuir, 2019, 35, 15813-15824.	3.5	33
12	Measuring, Modeling, and Predicting the Magnetic Assembly Rate of 2D-Staggered Janus Particle Chains. Langmuir, 2019, 35, 8121-8130.	3.5	9
13	Self-assembly of magnetic colloids with shifted dipoles. Soft Matter, 2019, 15, 4078-4086.	2.7	16
14	Investigation on electrical surface modification of waste to energy ash for possible use as an electrode material in microbial fuel cells. Waste Management and Research, 2018, 36, 259-268.	3.9	3
15	Experimental Study of the Motion of Patchy Particle Swimmers Near a Wall. Langmuir, 2018, 34, 15593-15599.	3.5	19
16	Janus particle-based microprobes: Determination of object orientation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 452-462.	4.7	7
17	Control of photo-induced voltages in plasmonic crystals via spin-orbit interactions. Optics Express, 2016, 24, 10402.	3.4	14

18 Towards a Large-area Plasmonic Polarization Detector. , 2016, , .

0

#	Article	IF	CITATIONS
19	Directed Motion of Metallodielectric Particles by Contact Charge Electrophoresis. Langmuir, 2016, 32, 13167-13173.	3.5	21
20	Impact of particle shape on electron transport and lifetime in zinc oxide nanorod-based dye-sensitized solar cells. AIMS Materials Science, 2016, 3, 51-65.	1.4	5
21	Collapse of Particle-Laden Interfaces under Compression: Buckling vs Particle Expulsion. Langmuir, 2015, 31, 7764-7775.	3.5	90
22	Mechanical Stability of Polystyrene and Janus Particle Monolayers at the Air/Water Interface. Journal of the American Chemical Society, 2015, 137, 15370-15373.	13.7	50
23	Nanoparticles at liquid interfaces: Rotational dynamics and angular locking. Journal of Chemical Physics, 2014, 140, 014904.	3.0	20
24	Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 146, 499-509.	2.3	55
25	Evaluation of the Structure and Transport Properties of Nanostructured Antimony Telluride (Sb2Te3). Journal of Electronic Materials, 2014, 43, 1927-1932.	2.2	10
26	Two-Dimensional Array of Silica Particles as a SERS Substrate. Journal of Physical Chemistry C, 2014, 118, 9114-9118.	3.1	24
27	Molecular Dynamics Simulations: Insight into Molecular Phenomena at Interfaces. Langmuir, 2014, 30, 11272-11283.	3.5	41
28	Behaviour of iron oxide (Fe3O4) Janus particles in overlapping external AC electric and static magnetic fields. Soft Matter, 2013, 9, 9174.	2.7	48
29	The effect of capillary bridging on the Janus particle stability at the interface of two immiscible liquids. Soft Matter, 2013, 9, 4585.	2.7	28
30	Template-Assisted GLAD: Approach to Single and Multipatch Patchy Particles with Controlled Patch Shape. Langmuir, 2013, 29, 15755-15761.	3.5	29
31	Viscosity-Dependent Janus Particle Chain Dynamics. Langmuir, 2013, 29, 14779-14786.	3.5	18
32	Three-dimensionally ordered macroporous TiO2 electrodes: Fabrication of inverse TiO2 opals for pore-size-dependent characterization. Journal of Materials Research, 2013, 28, 369-377.	2.6	6
33	Molecular dynamics simulations of the evaporation of particle-laden droplets. Physical Review E, 2013, 87, 052404.	2.1	20
34	Effect of Janus particles as filler materials for acrylate-based dielectric elastomers. Proceedings of SPIE, 2012, , .	0.8	0
35	Template-Assisted Fabrication of Patchy Particles with Uniform Patches. Langmuir, 2012, 28, 9915-9919.	3.5	45
36	Assembly Behavior of Iron Oxide-Capped Janus Particles in a Magnetic Field. Langmuir, 2012, 28, 1149-1156.	3.5	87

#	Article	IF	CITATIONS
37	Chapter 8. Self-assembly of Janus Particles Under External Fields. RSC Smart Materials, 2012, , 168-203.	0.1	1
38	Topological Transitions in Metamaterials. Science, 2012, 336, 205-209.	12.6	734
39	Spontaneous emission enhancement using hyperbolic metamaterials. , 2011, , .		0
40	Coalescence of particle-laden drops with a planar oil–water interface. Journal of Colloid and Interface Science, 2011, 362, 235-241.	9.4	8
41	Surface-anisotropic spherical colloids in geometric and field confinement. Current Opinion in Colloid and Interface Science, 2011, 16, 84-95.	7.4	65
42	Fabrication, Assembly, and Application of Patchy Particles. Macromolecular Rapid Communications, 2010, 31, 150-168.	3.9	358
43	Macromol. Rapid Commun. 2/2010. Macromolecular Rapid Communications, 2010, 31, .	3.9	360
44	Guided ion beam and theoretical studies of the reaction of Ag+ with CS2: Gas-phase thermochemistry of AgS+ and AgCS+ and insight into spin-forbidden reactions. Journal of Chemical Physics, 2010, 132, 024306.	3.0	4
45	Programmed assembly of metallodielectric patchy particles in external AC electric fields. Soft Matter, 2010, 6, 1413.	2.7	124
46	Guided ion beam and theoretical studies of the reaction of Ru+ with CS2 in the gas-phase: thermochemistry of RuC+, RuS+, and RuCS+. Physical Chemistry Chemical Physics, 2010, 12, 4078.	2.8	16
47	Photoluminescence modification in self-assembled fluorescent 3D photonic crystals. , 2010, , .		1
48	Multifunctional Patchy Particles by Glancing Angle Deposition. Langmuir, 2009, 25, 9057-9063.	3.5	149
49	Guided Ion Beam and Theoretical Studies of the Reactions of Pd ⁺ with CS ₂ : Thermochemistry of PdS ⁺ and PdCS ⁺ . Inorganic Chemistry, 2009, 48, 10371-10382.	4.0	13
50	Experimental and Theoretical Studies of the Reaction of Rh ⁺ with CS ₂ in the Gas Phase: Thermochemistry of RhS ⁺ and RhCS ⁺ . Journal of Physical Chemistry A, 2009, 113, 10955-10965.	2.5	10
51	Assembled Surface-Anisotropic Colloids as a Template for a Multistage Catalytic Membrane Reactor. ACS Applied Materials & Interfaces, 2009, 1, 1747-1754.	8.0	19
52	Patchy Particles by Glancing Angle Deposition. Langmuir, 2008, 24, 355-358.	3.5	212
53	Colloid-Templated Multisectional Porous Polymeric Fibers. Langmuir, 2008, 24, 10616-10620.	3.5	10
54	Self-Assembly of T-Structures in Molecular Fluids. Journal of Physical Chemistry B, 2007, 111, 2081-2089.	2.6	17

#	Article	IF	CITATIONS
55	Surface-Anisotropic Polystyrene Spheres by Electroless Deposition. Langmuir, 2006, 22, 8281-8284.	3.5	65
56	Gas-phase thermochemistry of the early cationic transition-metal sulfides of the second row: YS+, ZrS+, and NbS+. International Journal of Mass Spectrometry, 2006, 249-250, 263-278.	1.5	42
57	Electropolymerization on Microelectrodes:Â Functionalization Technique for Selective Protein and DNA Conjugation. Analytical Chemistry, 2006, 78, 6340-6346.	6.5	28
58	Electrical characterization of single GaN nanowires. Nanotechnology, 2005, 16, 2941-2953.	2.6	105
59	The Cyclopropylmethylâ^'3-Butenyl Rearrangement on Mo(110): A Radical Clock on a Surface?â€. Journal of Physical Chemistry A, 2004, 108, 2972-2981.	2.5	11
60	Inelastic Electron Tunneling Spectroscopy of an Alkanedithiol Self-Assembled Monolayer. Nano Letters, 2004, 4, 643-646.	9.1	364
61	Structure, thermochemistry, and reactivity of MSn+ cations (M=V, Mo; n=1–3) in the gas phase. International Journal of Mass Spectrometry, 2003, 228, 439-456.	1.5	30
62	Effect of Coadsorbed Species and Temperature on Competitive Reaction Channels for Nascent Radicals:Âc-C3H7CH2SH on Mo(110)â^'(6 × 1)-O. Journal of Physical Chemistry B, 2002, 106, 663-672.	2.6	9
63	Kinetic Control of Surface Reactions:Â Regioselectivity in the Reaction of 2-Methylcyclopropylmethanol on Mo(110)â^'(6×1)â^'Oâ€. Journal of Physical Chemistry B, 2002, 106, 8407-8414.	2.6	2
64	Guided Ion Beam Studies of the Reactions of Ni+, Cu+, and Zn+with CS2and COSâ€. Journal of Physical Chemistry A, 2002, 106, 9788-9797.	2.5	57
65	Rearrangement as a probe for radical formation: bromomethylcyclopropane on oxygen-covered Mo(110). Surface Science, 2001, 479, 273-286.	1.9	6
66	Guided Ion Beam Studies of the Reactions of Fe+ and Co+ with CS2 and COS. Journal of Physical Chemistry A, 2001, 105, 8456-8464.	2.5	47
67	Platinum Dioxide Cation:Â Easy to Generate Experimentally but Difficult to Describe Theoretically. Journal of the American Chemical Society, 2001, 123, 142-147.	13.7	127
68	Gas-Phase Chemistry of Bare V+ Cation with Oxygen and Water at Room Temperature:  Formation and Hydration of Vanadium Oxide Cations. Journal of Physical Chemistry A, 2001, 105, 4259-4271.	2.5	74
69	Guided ion beam studies of the state-specific reactions of Cr+ and Mn+ with CS2 and COS. International Journal of Mass Spectrometry, 2001, 210-211, 283-301.	1.5	46
70	11 The binding in neutral and cationic 3d and 4d transition-metal monoxides and-sulfides. Advances in Metal and Semiconductor Clusters, 2001, , 347-395.	1.5	42
71	Thermochemistry and Reactivity of Cationic Scandium and Titanium Sulfide in the Gas Phase. Journal of Physical Chemistry A, 2000, 104, 5046-5058.	2.5	78
72	Hydroxymethylcyclopropane on Oxygen-Covered Mo(110):Â A Radical Clock on a Surface. Journal of the American Chemical Society, 2000, 122, 12395-12396.	13.7	11

AND ILONA KRETZSCHMAR

#	Article	IF	CITATIONS
73	PCCP does exist. Physical Chemistry Chemical Physics, 2000, 2, 2245-2250.	2.8	17
74	Kinetic-energy dependence of competitive spin-allowed and spin-forbidden reactions: V++CS2. Journal of Chemical Physics, 1999, 110, 7858-7870.	3.0	112
75	Hydrodesulfurization of FeS+:Â Predominance of Kinetic over Thermodynamic Control. Journal of Physical Chemistry A, 1999, 103, 5925-5934.	2.5	26
76	On the Structural Dichotomy of Cationic, Anionic, and Neutral FeS2. Inorganic Chemistry, 1999, 38, 3474-3480.	4.0	52
77	Iron-Mediated Amination of Hydrocarbons in the Gas Phase. Helvetica Chimica Acta, 1998, 81, 2348-2369.	1.6	31
78	Mass-Spectrometric Experiments together with Electronic Structure Calculations Support the Existence of the Elusive Ammonia Oxide Molecule and Its Radical Cation. European Journal of Inorganic Chemistry, 1998, 1998, 1529-1538.	2.0	24
79	Experimental and Theoretical Studies of Vanadium Sulfide Cation. Journal of Physical Chemistry A, 1998, 102, 10060-10073.	2.5	74
80	Effects of Sequential Ligation of Molybdenum Cation by Chalcogenides on Electronic Structure and Gas-Phase Reactivityâ€. Journal of Physical Chemistry A, 1997, 101, 6252-6264.	2.5	138
81	The tropylium/benzylium ion dichotomy in the gas-phase reactions of transition metal chalcogenide cations with toluene. International Journal of Mass Spectrometry and Ion Processes, 1997, 167-168, 103-115.	1.8	20
82	Chromium Dioxide Cation OCrO+in the Gas Phase:Â Structure, Electronic States, and the Reactivity with Hydrogen and Hydrocarbons1. Journal of the American Chemical Society, 1996, 118, 9941-9952.	13.7	115