Kazuaki Furukawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1261891/publications.pdf

Version: 2024-02-01

83 1,766 26
papers citations h-index

26 39
-index g-index

84 84 all docs docs citations

84 times ranked 2162 citing authors

#	Article	IF	CITATIONS
1	Adhesive Layer for Robust Graphene Transferred on Solid Support and Its Application to Graphene Microelectrode Manufacturing. Sensors and Materials, 2019, 31, 1157.	0.5	O
2	Relaxation of Plasma Carriers in Graphene: An Approach by Frequencyâ€Dependent Optical Conductivity Measurement. Advanced Optical Materials, 2018, 6, 1701402.	7.3	16
3	On-Chip FRET Graphene Aptasensor. International Journal of Automation Technology, 2018, 12, 37-44.	1.0	0
4	Self-propelled ion gel at air-water interface. Scientific Reports, 2017, 7, 9323.	3.3	14
5	Energy Dissipation in Graphene Mechanical Resonators with and without Free Edges. Micromachines, 2016, 7, 158.	2.9	14
6	Direct growth of graphene on SiC(0001) by KrF-excimer-laser irradiation. Applied Physics Letters, 2016, 108, 093107.	3.3	8
7	Planar cold cathode based on a multilayer-graphene/SiO2/Si heterodevice. Applied Physics Express, 2016, 9, 105101.	2.4	5
8	Graphene FRET Aptasensor. ACS Sensors, 2016, 1, 710-716.	7.8	30
9	On-chip FRET Graphene Oxide Aptasensor: Quantitative Evaluation of Enhanced Sensitivity by Aptamer with a Double-stranded DNA Spacer. Analytical Sciences, 2015, 31, 875-879.	1.6	17
10	Direct growth of patterned graphene on SiC(0001) surfaces by KrF excimer-laser irradiation. , 2015, , .		0
11	Effects of UV light intensity on electrochemical wet etching of SiC for the fabrication of suspended graphene. Japanese Journal of Applied Physics, 2015, 54, 036502.	1.5	3
12	On-chip graphene oxide aptasensor for multiple protein detection. Analytica Chimica Acta, 2015, 866, 1-9.	5.4	42
13	Electrostatic control of the dynamics of lipid bilayer self-spreading using a nanogap gate. Materials Research Express, 2014, 1, 035404.	1.6	0
14	Etchant-free and damageless transfer of monolayer and bilayer graphene grown on SiC. Japanese Journal of Applied Physics, 2014, 53, 115101.	1.5	10
15	Energy dissipation in edged and edgeless graphene mechanical resonators. Journal of Applied Physics, 2014, 116, 064304.	2.5	13
16	Molecular design for enhanced sensitivity of a FRET aptasensor built on the graphene oxide surface. Chemical Communications, 2013, 49, 10346-10348.	4.1	32
17	Protein recognition on a single graphene oxide surface fixed on a solid support. Journal of Materials Chemistry B, 2013, 1, 1119.	5.8	29
18	Epitaxial Trilayer Graphene Mechanical Resonators Obtained by Electrochemical Etching Combined with Hydrogen Intercalation. Japanese Journal of Applied Physics, 2013, 52, 04CH01.	1.5	13

#	Article	IF	CITATIONS
19	Selective charge doping of chemical vapor deposition-grown graphene by interface modification. Applied Physics Letters, 2013, 103, .	3.3	16
20	Graphene-modified Interdigitated Array Electrode: Fabrication, Characterization, and Electrochemical Immunoassay Application. Analytical Sciences, 2013, 29, 55-60.	1.6	28
21	Electrostatic Control of Artificial Cell Membrane Spreading by Tuning the Thickness of an Electric Double Layer in a Nanogap. IEICE Transactions on Electronics, 2013, E96.C, 344-347.	0.6	1
22	Self-spreading of Supported Lipid Bilayer on SiO2 Surface Bearing Graphene Oxide. Chemistry Letters, 2012, 41, 1259-1261.	1.3	20
23	Graphene Growth from Spin-Coated Polymers without a Gas. Japanese Journal of Applied Physics, 2012, 51, 06FD01.	1.5	0
24	Near-Infrared Photoluminescence Spectral Imaging of Chemically Oxidized Graphene Flakes. E-Journal of Surface Science and Nanotechnology, 2012, 10, 513-517.	0.4	1
25	Donor-to-Acceptor Distance Dependent Fluorescence Resonance Energy Transfer Efficiency for Multiple Donors and Acceptors System Confined within 2-Dimensional Fluid of Supported Lipid Bilayer. E-Journal of Surface Science and Nanotechnology, 2012, 10, 121-127.	0.4	0
26	Graphene Growth from Spin-Coated Polymers without a Gas. Japanese Journal of Applied Physics, 2012, 51, 06FD01.	1.5	1
27	Electrostatic Control of Lipid Bilayer Self-Spreading Using a Nanogap Gate on a Solid Support. Journal of the American Chemical Society, 2011, 133, 6118-6121.	13.7	10
28	Supported Lipid Bilayer Composition Microarray Fabricated by Pattern-Guided Self-Spreading. Langmuir, 2011, 27, 7341-7344.	3.5	22
29	Graphene Growth from a Spin-Coated Polymer without a Reactive Gas. Applied Physics Express, 2011, 4, 065102.	2.4	18
30	Self-Spreading Supported Lipid Bilayer Passing through Single Nanogap Structure: Effect of Position of Dyes in Lipid Molecules. Japanese Journal of Applied Physics, 2010, 49, 04DL15.	1.5	3
31	Transistor Properties of Novel Organic Conducting Polymers Bearing Tetrathiafulvalene Units in the Backbone. Japanese Journal of Applied Physics, 2010, 49, 01AB08.	1.5	5
32	Pattern Formation and Molecular Transport of Histidine-Tagged GFPs Using Supported Lipid Bilayers. Langmuir, 2010, 26, 12716-12721.	3.5	10
33	Visualization of Single Membrane Protein Structure in Stretched Lipid Bilayer Suspended over Nanowells. Applied Physics Express, 2010, 3, 027002.	2.4	14
34	Self-spreading Lipid Bilayer as Nanofluidic Medium for Micro- and Nanostructured Biosurface Fabrication. Materials Research Society Symposia Proceedings, 2009, 1236, 1.	0.1	0
35	Structural and Electrical Properties of Organic Conducting Polymers Bearing Tetrathiafulvalene Backbone. Molecular Crystals and Liquid Crystals, 2009, 504, 231-237.	0.9	1
36	Supported Lipid Bilayer. Hyomen Kagaku, 2009, 30, 207-218.	0.0	1

3

#	Article	IF	CITATIONS
37	Elastic modulus of suspended purple membrane measured by atomic force microscopy. Applied Surface Science, 2008, 254, 7877-7880.	6.1	9
38	Novel "Lipid-Flow Chip―Configuration to Determine Donor-to-Acceptor Ratio-Dependent Fluorescence Resonance Energy Transfer Efficiency. Langmuir, 2008, 24, 921-926.	3.5	19
39	Self-Assembly of Gold Nanorods Induced by Intermolecular Interactions of Surface-Anchored Lipids. Langmuir, 2008, 24, 5654-5658.	3.5	61
40	Effect of Ca ²⁺ on Vesicle Fusion on Solid Surface: An In vitro Model of Protein-Accelerated Vesicle Fusion. Japanese Journal of Applied Physics, 2008, 47, 6164.	1.5	9
41	Self-Spreading Behavior of Supported Lipid Bilayer through Single Sub-100-nm Gap. Japanese Journal of Applied Physics, 2008, 47, 3248-3252.	1.5	17
42	Influence of the Local Environment on Determining Aspect-Ratio Distributions of Gold Nanorods in Solution Using Gans Theory. Journal of Physical Chemistry C, 2007, 111, 14299-14306.	3.1	31
43	Anisotropic assembly of gold nanorods assisted by selective ion recognition of surface-anchored crown ether derivatives. Chemical Communications, 2007, , 1080.	4.1	59
44	Supported Lipid Bilayer Self-Spreading on a Nanostructured Silicon Surface. Langmuir, 2007, 23, 367-371.	3.5	51
45	A new morphology of copper 7,7,8,8-tetracyano-p-quinodimethane. Micron, 2007, 38, 536-542.	2.2	15
46	Single Polymer Wiring and Nano-Scale Optoelectronic Properties. Kobunshi, 2007, 56, 438-438.	0.0	0
47	Microchannel device using self-spreading lipid bilayer as molecule carrier. Lab on A Chip, 2006, 6, 1001.	6.0	40
48	Advancing conjugated polymers into nanometer-scale devices. Pure and Applied Chemistry, 2006, 78, 1803-1822.	1.9	9
49	Molecular-Mediated Single-Electron Devices Operating at Room Temperature. Japanese Journal of Applied Physics, 2006, 45, 4285-4289.	1.5	6
50	Electron Transport in Self-Assembled Polymer Molecular Junctions. Physical Review Letters, 2006, 96, 027801.	7.8	69
51	A Self-Assembled Nano Optical Switch and Transistor Based on a Rigid Conjugated Polymer, Thioacetyl-End-Functionalized Poly(para-phenylene ethynylene). Journal of the American Chemical Society, 2005, 127, 2804-2805.	13.7	76
52	Selective Chemisorption of End-Functionalized Conjugated Polymer on Macro- and Nanoscale Surfaces. Langmuir, 2005, 21, 511-515.	3.5	41
53	Observation and Manipulation of Nanostructures Formed by Rigid Rodlike Polymers. Japanese Journal of Applied Physics, 2004, 43, 4521-4524.	1.5	5
54	Carrier injection from gold electrodes into thioacetyl-end-functionalized poly(para-phenyleneethynylene)s. Physical Review B, 2004, 69, .	3.2	19

#	Article	IF	CITATIONS
55	Self-assembled rigid conjugated polymer nanojunction and its nonlinear current–voltage characteristics at room temperature. Applied Physics Letters, 2004, 85, 115-117.	3.3	37
56	Heteroepitaxial metalorganic vapor phase epitaxial growth of InP nanowires on $GaP(111)B$. Thin Solid Films, 2004, 464-465, 248-250.	1.8	11
57	Vapor–liquid–solid growth of vertically aligned InP nanowires by metalorganic vapor phase epitaxy. Thin Solid Films, 2004, 464-465, 244-247.	1.8	50
58	Oxygen Plasma Generated Copper/Copper Oxides Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 13116-13118.	2.6	26
59	Synthesis and Electrolytic Polymerization of the Ethylenedioxy-Substituted Terthiopheneâ^'Fullerene Dyad. Organic Letters, 2004, 6, 4865-4868.	4.6	61
60	Fabrication of nano-gap electrodes using electroplating technique. Thin Solid Films, 2003, 438-439, 317-321.	1.8	69
61	End-Grafted Polysilane — An Approach to Single Polymer Science. ChemInform, 2003, 34, no.	0.0	0
62	Polysilane Bearing "Sulfide Tripod―Terminus: Preparation and Selective Chemisorption on Gold Surface. Macromolecules, 2003, 36, 9-11.	4.8	27
63	Side Chain Effect on Thermochromism and Solvatochromism of End-Grafted Polysilane [Si(CH3)2SiR2]n (R = C2H5, n-C4H9, n-C6H13, n-C8H17, n-C10H21). Macromolecules, 2003, 36, 7681-7688.	4.8	9
64	End-Grafted PolysilaneAn Approach to Single Polymer Science. Accounts of Chemical Research, 2003, 36, 102-110.	15.6	35
65	Synthesis and atomic force microscopy observations of the single-peptide nanotubes and their micro-order assemblies. Physical Review B, 2002, 66, .	3.2	17
66	Conformational Transition of End-Grafted Poly(di-n-hexylsilane) in Solventless Conditions. Macromolecules, 2002, 35, 327-329.	4.8	8
67	Polysilane light-emitting diodes. Polymers for Advanced Technologies, 2000, 11, 460-467.	3.2	39
68	Preparation and single molecule structure of electroactive polysilane end-grafted on a crystalline silicon surface. Applied Physics Letters, 2000, 77, 4289-4291.	3.3	19
69	Molecular weight dependent electroluminescence of silicon polymer near-ultraviolet light-emitting diodes. Journal of Applied Physics, 2000, 88, 2892-2897.	2.5	21
70	Molecular weight dependence of the conformational phase transition and electroluminescence of diarylpolysilane diodes. Journal of Applied Physics, 2000, 88, 3408-3413.	2.5	17
71	Near-ultraviolet electroluminescent performance of polysilane-based light-emitting diodes with a double-layer structure. Journal of Applied Physics, 2000, 87, 1968-1973.	2.5	38
72	Bipolar Carrier Behavior in a Near Ultraviolet Electroluminescent Silicon Polymer: Poly[Bis (p-n-butylphenyl)silane]. Molecular Crystals and Liquid Crystals, 1999, 327, 181-184.	0.3	9

#	Article	IF	CITATIONS
73	Conformational phase transition in a high-efficiency near-ultraviolet electroluminescent diarylpolysilane. Synthetic Metals, 1999, 105, 17-22.	3.9	9
74	Effects of structural defects on hole drift mobility in aryl-substituted polysilanes. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 1631-1645.	0.6	55
75	End-Grafted Semiconducting Polymerâ€"Candidate for Molecular Wire. Materials Research Society Symposia Proceedings, 1999, 582, .	0.1	0
76	End-Grafted Semiconducting Polymer—Candidate for Molecular Wire. Materials Research Society Symposia Proceedings, 1999, 582, 1.	0.1	1
77	Synthesis and Characterization of End-Grafted Polysilane on a Substrate Surface. Journal of the American Chemical Society, 1998, 120, 7367-7368.	13.7	48
78	Novel Pyrolytic Conversion of Poly[(diisobutylsilylene)methylene] to Stoichiometric Silicon Carbide. Macromolecules, 1997, 30, 7618-7620.	4.8	4
79	Soft X-ray emission and absorption spectroscopy for electronic structure analysis of cubic silicon clusters in Si K-shell threshold. Journal of Electron Spectroscopy and Related Phenomena, 1997, 85, 159-165.	1.7	3
80	Superlattice structure of octa-tert-butylpentacyclo [4.2.0.02,5.03,8.04,7] octasilane found by reinvestigation of X-ray structure analysis. Journal of Organometallic Chemistry, 1996, 515, 37-41.	1.8	20
81	A New Si Doping Source for GaAs Growth by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1994, 33, L413-L416.	1.5	4
82	Cubic silicon cluster. Applied Physics Letters, 1992, 60, 2744-2745.	3.3	82
83	Optical properties of silicon network polymers. Macromolecules, 1990, 23, 3423-3426.	4.8	112