MarÃ-a-Trinidad Mt Gallegos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1261030/publications.pdf

Version: 2024-02-01

53 papers 4,418 citations

172457 29 h-index 50 g-index

54 all docs 54 docs citations

54 times ranked

4405 citing authors

#	Article	IF	CITATIONS
1	Exploring the expression and functionality of the <i>rsm</i> sRNAs in <i>Pseudomonas syringae</i> pv. tomato DC3000. RNA Biology, 2021, 18, 1818-1833.	3.1	6
2	Distinctive features of the <scp>Gacâ€Rsm</scp> pathway in plantâ€associated <i>Pseudomonas</i> Environmental Microbiology, 2021, 23, 5670-5689.	3.8	16
3	Suppression of UV-B stress induced flavonoids by biotic stress: Is there reciprocal crosstalk?. Plant Physiology and Biochemistry, 2019, 134, 53-63.	5.8	28
4	Visualization and characterization of <i>Pseudomonas syringae</i> pv. tomato <scp>DC</scp> 3000 pellicles. Microbial Biotechnology, 2019, 12, 688-702.	4.2	20
5	A novel c-di-GMP binding domain in glycosyltransferase BgsA is responsible for the synthesis of a mixed-linkage β-glucan. Scientific Reports, 2017, 7, 8997.	3.3	12
6	<scp>AmrZ</scp> regulates cellulose production in <scp><i>P</i></scp> <i>seudomonas syringae</i> pv. tomato <scp>DC</scp> 3000. Molecular Microbiology, 2016, 99, 960-977.	2.5	41
7	Mini-Tn7 vectors for stable expression of diguanylate cyclase PleD* in Gram-negative bacteria. BMC Microbiology, 2015, 15, 190.	3.3	10
8	Diguanylate cyclase <scp>D</scp> gc <scp>P</scp> is involved in plant and human <scp><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P</i>Cop><i>P<td>3.8</td><td>31</td></i></scp>	3.8	31
9	Novel mixed-linkage \hat{l}^2 -glucan activated by c-di-GMP in <i>Sinorhizobium meliloti</i> National Academy of Sciences of the United States of America, 2015, 112, E757-65.	7.1	64
10	The câ€diâ€ <scp>GMP</scp> phosphodiesterase <scp>BifA</scp> is involved in the virulence of bacteria from the <i>><scp>P</scp>seudomonas syringae</i> complex. Molecular Plant Pathology, 2015, 16, 604-615.	4.2	52
11	Contribution of the non-effector members of the HrpL regulon, iaaL and matE, to the virulence of Pseudomonas syringae pv. tomato DC3000 in tomato plants. BMC Microbiology, 2015, 15, 165.	3.3	29
12	FleQ Coordinates Flagellum-Dependent and -Independent Motilities in Pseudomonas syringae pv. tomato DC3000. Applied and Environmental Microbiology, 2015, 81, 7533-7545.	3.1	44
13	Responses to Elevated c-di-GMP Levels in Mutualistic and Pathogenic Plant-Interacting Bacteria. PLoS ONE, 2014, 9, e91645.	2.5	75
14	Plant flavonoids target <i><scp>P</scp>seudomonas syringae</i> pv. tomato <scp>DC</scp> 3000 flagella and type <scp>III</scp> secretion system. Environmental Microbiology Reports, 2013, 5, 841-850.	2.4	71
15	Induction of <i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000 MexAB-OprM Multidrug Efflux Pump by Flavonoids Is Mediated by the Repressor PmeR. Molecular Plant-Microbe Interactions, 2011, 24, 1207-1219.	2.6	59
16	Pathogenic and mutualistic plant-bacteria interactions: ever increasing similarities. Open Life Sciences, 2011, 6, 911-917.	1.4	9
17	Crystal structure of TtgV in complex with its DNA operator reveals a general model for cooperative DNA binding of tetrameric gene regulators. Genes and Development, 2010, 24, 2556-2565.	5.9	33
18	TtgV Represses Two Different Promoters by Recognizing Different Sequences. Journal of Bacteriology, 2009, 191, 1901-1909.	2.2	19

#	Article	IF	CITATIONS
19	Different Modes of Binding of Mono- and Biaromatic Effectors to the Transcriptional Regulator TTGV. Journal of Biological Chemistry, 2007, 282, 16308-16316.	3.4	27
20	Crystal Structures of Multidrug Binding Protein TtgR in Complex with Antibiotics and Plant Antimicrobials. Journal of Molecular Biology, 2007, 369, 829-840.	4.2	116
21	Optimization of the Palindromic Order of the TtgR Operator Enhances Binding Cooperativity. Journal of Molecular Biology, 2007, 369, 1188-1199.	4.2	39
22	Complexity in efflux pump control: crossâ€regulation by the paralogues TtgV and TtgT. Molecular Microbiology, 2007, 66, 1416-1428.	2.5	31
23	The Use of Microcalorimetry to Study Regulatory Mechanisms in Pseudomonas. , 2007, , 255-277.		2
24	Effector-Repressor Interactions, Binding of a Single Effector Molecule to the Operator-bound TtgR Homodimer Mediates Derepression. Journal of Biological Chemistry, 2006, 281, 7102-7109.	3.4	79
25	Molecular Characterization of Resistance-Nodulation-Division Transporters from Solvent- and Drug-Resistant Bacteria in Petroleum-Contaminated Soil. Applied and Environmental Microbiology, 2005, 71, 580-586.	3.1	28
26	The Multidrug Efflux Regulator TtgV Recognizes a Wide Range of Structurally Different Effectors in Solution and Complexed with Target DNA. Journal of Biological Chemistry, 2005, 280, 20887-20893.	3.4	68
27	The TetR Family of Transcriptional Repressors. Microbiology and Molecular Biology Reviews, 2005, 69, 326-356.	6.6	989
28	TtgV Bound to a Complex Operator Site Represses Transcription of the Promoter for the Multidrug and Solvent Extrusion TtgGHI Pump. Journal of Bacteriology, 2004, 186, 2921-2927.	2.2	46
29	Enzymatic Activation of the cis-Trans Isomerase and Transcriptional Regulation of Efflux Pumps in Solvent Tolerance in Pseudomonas Putida. , 2004, , 479-508.		6
30	Antibiotic-Dependent Induction of Pseudomonas putida DOT-T1E TtgABC Efflux Pump Is Mediated by the Drug Binding Repressor TtgR. Antimicrobial Agents and Chemotherapy, 2003, 47, 3067-3072.	3.2	134
31	In Vivo and In Vitro Evidence that TtgV Is the Specific Regulator of the TtgGHI Multidrug and Solvent Efflux Pump of Pseudomonas putida. Journal of Bacteriology, 2003, 185, 4755-4763.	2.2	88
32	Mechanisms of Solvent Tolerance in Gram-Negative Bacteria. Annual Review of Microbiology, 2002, 56, 743-768.	7.3	705
33	Responses of Gram-negative bacteria to certain environmental stressors. Current Opinion in Microbiology, 2001, 4, 166-171.	5.1	192
34	Binding of transcriptional activators to sigma 54 in the presence of the transition state analog ADP-aluminum fluoride: insights into activator mechanochemical action. Genes and Development, 2001, 15, 2282-2294.	5.9	118
35	Interaction of sigma factor ÏfN with Escherichia coli RNA polymerase core enzyme. Biochemical Journal, 2000, 352, 539.	3.7	3
36	The Bacterial Enhancer-Dependent Ï, ⁵⁴ (Ï, ^N) Transcription Factor. Journal of Bacteriology, 2000, 182, 4129-4136.	2.2	404

#	Article	IF	Citations
37	Single amino acid substitution mutants of Klebsiella pneumoniae sigma54 defective in transcription. Nucleic Acids Research, 2000, 28, 4419-4427.	14.5	4
38	Functionality of Purified \ddot{I} , N (\ddot{I} , 54) and a NifA-Like Protein from the Hyperthermophile Aquifex aeolicus. Journal of Bacteriology, 2000, 182, 1616-1623.	2.2	16
39	Sequences in $\ddot{l}f$ 54 region I required for binding to early melted DNA and their involvement in sigma-DNA isomerisation 1 1Edited by J. Karn. Journal of Molecular Biology, 2000, 297, 849-859.	4.2	23
40	Interaction of sigma factor ÏfN with Escherichia coli RNA polymerase core enzyme. Biochemical Journal, 2000, 352, 539-547.	3.7	7
41	Activation of Transcription by the Sigma-54 RNA Polymerase Holoenzyme. Current Plant Science and Biotechnology in Agriculture, 2000, , 73-77.	0.0	0
42	Functions of the Ï,54 Region I in Trans and Implications for Transcription Activation. Journal of Biological Chemistry, 1999, 274, 25285-25290.	3.4	29
43	Critical Nucleotides in the Upstream Region of the XylS-dependent TOL meta-Cleavage Pathway Operon Promoter as Deduced from Analysis of Mutants. Journal of Biological Chemistry, 1999, 274, 2286-2290.	3.4	55
44	The XylS-dependent Pm promoter is transcribed in vivo by RNA polymerase with sigma32 or sigma38 depending on the growth phase. Molecular Microbiology, 1999, 31, 1105-1113.	2.5	77
45	Involvement of the sigmaN DNA-binding domain in open complex formation. Molecular Microbiology, 1999, 33, 873-885.	2.5	15
46	Sequences in $\ddot{l}f$ N determining holoenzyme formation and properties 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 288, 539-553.	4.2	49
47	Systematic analysis of $\ddot{l}f$ 54 N-terminal sequences identifies regions involved in positive and negative regulation of transcription 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 292, 229-239.	4.2	33
48	Amino-terminal sequences of sigma N (sigma 54) inhibit RNA polymerase isomerization. Genes and Development, 1999, 13, 357-370.	5.9	70
49	Transcriptional control of the multiple catabolic pathways encoded on the TOL plasmid pWW53 of Pseudomonas putida MT53. Journal of Bacteriology, 1997, 179, 5024-5029.	2.2	23
50	The TACAN4TGCA motif upstream from the -35 region in the sigma70-sigmaS-dependent Pm promoter of the TOL plasmid is the minimum DNA segment required for transcription stimulation by XylS regulators. Journal of Bacteriology, 1996, 178, 6427-6434.	2.2	37
51	Expression of the TOL plasmid xylS gene in Pseudomonas putida occurs from a alpha 70-dependent promoter or from alpha 70- and alpha 54-dependent tandem promoters according to the compound used for growth. Journal of Bacteriology, 1996, 178, 2356-2361.	2.2	62
52	Role of sigmas in transcription from the positively controlled Pm promoter of the TOL plasmid of Pseudomonas putida. Molecular Microbiology, 1995, 18, 851-857.	2.5	43
53	The XylS/AraC family of regulators. Nucleic Acids Research, 1993, 21, 807-810.	14.5	181