List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1260566/publications.pdf Version: 2024-02-01

		767	551
324	72,202	119	264
papers	citations	h-index	g-index
329	329	329	48244
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 1995, 378, 785-789.	27.8	4,694
2	Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochemical Journal, 2000, 351, 95-105.	3.7	3,878
3	PD 098059 Is a Specific Inhibitor of the Activation of Mitogen-activated Protein Kinase Kinase in Vitro and in Vivo. Journal of Biological Chemistry, 1995, 270, 27489-27494.	3.4	3,190
4	Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochemical Journal, 2000, 351, 95.	3.7	2,718
5	Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bî±. Current Biology, 1997, 7, 261-269.	3.9	2,612
6	The selectivity of protein kinase inhibitors: a further update. Biochemical Journal, 2007, 408, 297-315.	3.7	2,287
7	Protein kinases — the major drug targets of the twenty-first century?. Nature Reviews Drug Discovery, 2002, 1, 309-315.	46.4	1,944
8	A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell, 1994, 78, 1027-1037.	28.9	1,652
9	Cyanobacterial microcystin‣R is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Letters, 1990, 264, 187-192.	2.8	1,488
10	The renaissance of GSK3. Nature Reviews Molecular Cell Biology, 2001, 2, 769-776.	37.0	1,395
11	The specificities of protein kinase inhibitors: an update. Biochemical Journal, 2003, 371, 199-204.	3.7	1,339
12	Okadaic acid: a new probe for the study of cellular regulation. Trends in Biochemical Sciences, 1990, 15, 98-102.	7.5	1,332
13	GSK3 takes centre stage more than 20 years after its discovery. Biochemical Journal, 2001, 359, 1-16.	3.7	1,196
14	The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature, 1982, 296, 613-620.	27.8	1,157
15	On target with a new mechanism for the regulation of protein phosphorylation. Trends in Biochemical Sciences, 1993, 18, 172-177.	7.5	918
16	The origins of protein phosphorylation. Nature Cell Biology, 2002, 4, E127-E130.	10.3	904
17	Activation of the MAP kinase pathway by the protein kinase raf. Cell, 1992, 71, 335-342.	28.9	864
18	The Subunit Structure of Rabbit-Skeletal-Muscle Phosphorylase Kinase, and the Molecular Basis of Its Activation Reactions. FEBS Journal, 1973, 34, 1-14.	0.2	717

#	Article	IF	CITATIONS
19	Glycogen Synthase Kinaseâ€3 from Rabbit Skeletal Muscle. FEBS Journal, 1980, 107, 519-527.	0.2	697
20	GSK3 inhibitors: development and therapeutic potential. Nature Reviews Drug Discovery, 2004, 3, 479-487.	46.4	696
21	Identification of the Ca2+-dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase. FEBS Letters, 1978, 92, 287-293.	2.8	620
22	A Common Phosphate Binding Site Explains the Unique Substrate Specificity of GSK3 and Its Inactivation by Phosphorylation. Molecular Cell, 2001, 7, 1321-1327.	9.7	618
23	Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature, 1991, 353, 170-173.	27.8	611
24	DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature, 1984, 310, 503-505.	27.8	576
25	Molecular basis for the substrate specificity of protein kinase B; comparison with MAPKAP kinaseâ€∎ and p70 S6 kinase. FEBS Letters, 1996, 399, 333-338.	2.8	563
26	The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature, 1990, 348, 302-308.	27.8	548
27	Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochemical Journal, 1999, 339, 319-328.	3.7	543
28	The role of protein phosphorylation in human health and disease FEBS Journal, 2001, 268, 5001-5010.	0.2	528
29	Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Letters, 1992, 313, 307-313.	2.8	516
30	Kinase drug discovery 20 years after imatinib: progress and future directions. Nature Reviews Drug Discovery, 2021, 20, 551-569.	46.4	497
31	GLYCOGEN SYNTHASE KINASE-3 FROM RABBIT SKELETAL MUSCLE. Biochemical Society Transactions, 1981, 9, 241P-241P.	3.4	488
32	Discovery of A Ca2+ -and calmodulin-dependent protein phosphatase. FEBS Letters, 1982, 137, 80-84.	2.8	472
33	An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBS Letters, 1989, 250, 596-600.	2.8	472
34	The Protein Phosphatases Involved in Cellular Regulation. 1. Classification and Substrate Specificities. FEBS Journal, 1983, 132, 255-261.	0.2	456
35	The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Current Biology, 2000, 10, 439-448.	3.9	434
36	MSK1 and MSK2 Are Required for the Mitogen- and Stress-Induced Phosphorylation of CREB and ATF1 in Fibroblasts. Molecular and Cellular Biology, 2002, 22, 2871-2881.	2.3	417

#	Article	IF	CITATIONS
37	Chaperoned Ubiquitylation—Crystal Structures of the CHIP U Box E3 Ubiquitin Ligase and a CHIP-Ubc13-Uev1a Complex. Molecular Cell, 2005, 20, 525-538.	9.7	382
38	The role of protein phosphorylation in the hormonal control of enzyme activity. FEBS Journal, 1985, 151, 439-448.	0.2	373
39	Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15247-15252.	7.1	373
40	The control of protein phosphataseâ \in by targetting subunits. FEBS Journal, 1992, 210, 1023-1035.	0.2	350
41	Kinase Drug Discovery – What's Next in the Field?. ACS Chemical Biology, 2013, 8, 96-104.	3.4	344
42	The Role of Cyclic-AMP-Dependent Protein Kinase in the Regulation of Glycogen Metabolism in Mammalian Skeletal Muscle. Current Topics in Cellular Regulation, 1978, 14, 117-196.	9.6	326
43	Identification of the NH2 -terminal blocking group of calcineurin B as myristic acid. FEBS Letters, 1982, 150, 314-318.	2.8	317
44	Use of the Pharmacological Inhibitor BX795 to Study the Regulation and Physiological Roles of TBK1 and lκB Kinase ϵ. Journal of Biological Chemistry, 2009, 284, 14136-14146.	3.4	316
45	The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2BÉ› at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochemical Journal, 2001, 355, 609-615.	3.7	299
46	Exploitation of KESTREL to identify NDRG family members as physiological substrates for SGK1 and GSK3. Biochemical Journal, 2004, 384, 477-488.	3.7	299
47	Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution. Chemistry and Biology, 1998, 5, 321-328.	6.0	294
48	Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochemical Journal, 2004, 377, 249-255.	3.7	286
49	Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Letters, 1997, 409, 57-62.	2.8	272
50	p42 map kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2A1Implications for Alzheimer's disease. FEBS Letters, 1992, 312, 95-99.	2.8	269
51	Glycogen Synthase from Rabbit Skeletal Muscle; Effect of Insulin on the State of phosphorylation of the Seven Phosphoserine Residues <i>in vivo</i> . FEBS Journal, 1983, 130, 227-234.	0.2	269
52	Activation of protein kinase B β and γ isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B α. Biochemical Journal, 1998, 331, 299-308.	3.7	268
53	Novel cross-talk within the IKK family controls innate immunity. Biochemical Journal, 2011, 434, 93-104.	3.7	261
54	Feedback control of the protein kinase TAK1 by SAPK2a/p38Â. EMBO Journal, 2003, 22, 5793-5805.	7.8	253

#	Article	IF	CITATIONS
55	Will the Ubiquitin System Furnish as Many Drug Targets as Protein Kinases?. Cell, 2010, 143, 686-693.	28.9	253
56	The protein phosphatases involved in cellular regulation. Purification and characterisation of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. FEBS Journal, 1985, 149, 295-303.	0.2	250
57	A reinvestigation of the multisite phosphorylation of the transcription factor c-Jun. EMBO Journal, 2003, 22, 3876-3886.	7.8	245
58	Purification of Glycogen Synthase Kinase 3 from Rabbit Skeletal Muscle Copurification with the Activating Factor (FA)of the (Mg-ATP) Dependent Protein Phosphatase FEBS Journal, 1981, 119, 443-451.	0.2	232
59	Paradoxical activation of Raf by a novel Raf inhibitor. Chemistry and Biology, 1999, 6, 559-568.	6.0	232
60	PDK1, one of the missing links in insulin signal transduction?1. FEBS Letters, 1997, 410, 3-10.	2.8	230
61	Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway. FEBS Letters, 2001, 502, 21-24.	2.8	229
62	IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proceedings of the United States of America, 2014, 111, 775-780.	7.1	225
63	The α-isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is inactivated by p70 S6 kinase or MAP kinase-activated protein kinase-1 in vitro. FEBS Letters, 1994, 338, 37-42.	2.8	222
64	Assay of protein kinases using radiolabeled ATP: a protocol. Nature Protocols, 2006, 1, 968-971.	12.0	220
65	Further evidence that the inhibition of glycogen synthase kinase-3Î ² by IGF-1 is mediated by PDK1/PKB-induced phosphorylation of Ser-9 and not by dephosphorylation of Tyr-216. FEBS Letters, 1997, 416, 307-311.	2.8	213
66	A GSK3â€binding peptide from FRAT1 selectively inhibits the GSK3 atalysed phosphorylation of Axin and β atenin. FEBS Letters, 1999, 458, 247-251.	2.8	212
67	Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16986-16991.	7.1	210
68	Identification of the major protein phosphatases in mammalian cardiac muscle which dephosphorylate phospholamban. FEBS Journal, 1991, 196, 725-734.	0.2	200
69	The twentieth century struggle to decipher insulin signalling. Nature Reviews Molecular Cell Biology, 2006, 7, 867-873.	37.0	197
70	Targeting protein kinases for the development of anti-inflammatory drugs. Current Opinion in Cell Biology, 2009, 21, 317-324.	5.4	193
71	The Purification and Properties of Rabbit Skeletal Muscle Glycogen Synthase. FEBS Journal, 1976, 68, 21-30.	0.2	192
72	Inhibition of SAPK2a/p38 prevents hnRNP A0 phosphorylation by MAPKAP-K2 and its interaction with cytokine mRNAs. EMBO Journal, 2002, 21, 6505-6514.	7.8	191

#	Article	IF	CITATIONS
73	The MgATP-Dependent Protein Phosphatase and Protein Phosphatase 1 Have Identical Substrate Specificities. FEBS Journal, 1981, 115, 197-205.	0.2	190
74	Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activates glycogen synthase by rapamycin-insensitive pathways in skeletal muscle and adipose tissue. FEBS Letters, 1997, 406, 211-215.	2.8	187
75	The Protein Phosphatases Involved in Cellular Regulation. 5. Purification and Properties of a Ca2+ /Calmodulin-Dependent Protein Phosphatase (2B) from Rabbit Skeletal Muscle. FEBS Journal, 1983, 132, 289-295.	0.2	184
76	Phosphorylation of the regulatory subunit of smooth muscle protein phosphatase 1M at Thr850 induces its dissociation from myosin. FEBS Letters, 2002, 527, 101-104.	2.8	183
77	The IkappaB Kinase Family Phosphorylates the Parkinson's Disease Kinase LRRK2 at Ser935 and Ser910 during Toll-Like Receptor Signaling. PLoS ONE, 2012, 7, e39132.	2.5	183
78	Inhibitor-2 functions like a chaperone to fold three expressed isoforms of mammalian protein phosphatase-1 into a conformation with the specificity and regulatory properties of the native enzyme. FEBS Journal, 1993, 213, 1055-1066.	0.2	181
79	Synergistic activation of SAPK1/JNK1 by two MAP kinase kinases in vitro. Current Biology, 1998, 8, 1387-1391.	3.9	180
80	Glycogen Synthase from Rabbit Skeletal Muscle. FEBS Journal, 1980, 107, 529-537.	0.2	179
81	The discovery of glycogenin and the priming mechanism for glycogen biogenesis. FEBS Journal, 1991, 200, 625-631.	0.2	178
82	Reconstitution of a Mg-ATP-dependent protein phosphatase and its activation through a phosphorylation mechanism. FEBS Letters, 1982, 150, 319-324.	2.8	176
83	MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS Letters, 2000, 482, 44-48.	2.8	175
84	Separation and Characterisation of Glycogen Synthase Kinase 3,Glycogen Synthase Kinase 4 and Glycogen Synthase Kinase 5 from Rabbit Skeletal Muscle. FEBS Journal, 1982, 124, 21-35.	0.2	172
85	Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7. Biochemical Journal, 2000, 352, 145-154.	3.7	171
86	Molecular mechanisms involved in the regulation of cytokine production by muramyl dipeptide. Biochemical Journal, 2007, 404, 179-190.	3.7	171
87	Phosphorylation of the Typeâ€II Regulatory Subunit of Cyclicâ€AMPâ€Dependent Protein Kinase by Glycogen Synthase Kinase 5. FEBS Journal, 1982, 127, 473-481.	0.2	169
88	The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system. Biochemical Journal, 2013, 451, 427-437.	3.7	167
89	Multisite phosphorylation of glycogen synthase from rabbit skeletal muscle. FEBS Letters, 1982, 150, 191-196.	2.8	165
90	Phosphorylation and activation of human tyrosine hydroxylase in vitro by mitogen-activated protein (MAP) kinase and MAP-kinase-activated kinases 1 and 2. FEBS Journal, 1993, 217, 715-722.	0.2	164

#	Article	IF	CITATIONS
91	The protein phosphatases involved in cellular regulation. 2. Purification, subunit structure and properties of protein phosphatases-2Ao, 2A1, and 2A2 from rabbit skeletal muscle. FEBS Journal, 1985, 148, 253-263.	0.2	162
92	Comparative properties of glycogen phosphorylase. VIII. Phosphorylase from dogfish skeletal muscle. Purification and a comparison of its physical properties to those of rabbit muscle phosphorylase. Biochemistry, 1971, 10, 2683-2694.	2.5	159
93	[29] Assay and expression of mitogen-activated protein kinase, MAP kinase kinase, and Raf. Methods in Enzymology, 1995, 255, 279-290.	1.0	155
94	The Role of Calcium Ions, Calmodulin and Troponin in the Regulation of Phosphorylase Kinase from Rabbit Skeletal Muscle. FEBS Journal, 1980, 111, 563-574.	0.2	154
95	Characterisation of a Reconstituted Mg-ATP-Dependent Protein Phosphatase. FEBS Journal, 1983, 133, 455-461.	0.2	154
96	The catalytic subunits of protein phosphatase-1 and protein phosphatase 2A are distinct gene products. FEBS Journal, 1984, 138, 635-641.	0.2	154
97	Polyubiquitin Binding to Optineurin Is Required for Optimal Activation of TANK-binding Kinase 1 and Production of Interferon β. Journal of Biological Chemistry, 2011, 286, 35663-35674.	3.4	152
98	The structure of the B subunit of calcineurin. FEBS Journal, 1984, 139, 663-671.	0.2	151

99

#	Article	IF	CITATIONS
109	The Regulation of Glycogen Metabolism. Purification and Properties of Protein Phosphatase Inhibitor-2 from Rabbit Skeletal Muscle. FEBS Journal, 1980, 105, 195-203.	0.2	142
110	Identification of insulin-stimulated protein kinase-1 as the rabbit equivalent of rskmo-2. Identification of two threonines phosphorylated during activation by mitogen-activated protein kinase. FEBS Journal, 1993, 212, 581-588.	0.2	141
111	The Croonian Lecture 1998. Identification of a protein kinase cascade of major importance in insulin signal transduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 485-495.	4.0	141
112	Isolation and sequence analysis of a cDNA clone encoding a type-1 protein phosphatase catalytic subunit: Homology with protein phosphatase 2A. FEBS Letters, 1987, 223, 340-346.	2.8	132
113	The TLR and IL-1 signalling network at a glance. Journal of Cell Science, 2014, 127, 2383-90.	2.0	132
114	Glycogen Synthase from Rabbit Skeletal Muscle. State of Phosphorylation of the Seven Phosphoserine Residues in vivo in the Presence and Absence of Adrenaline. FEBS Journal, 1982, 124, 47-55.	0.2	131
115	A multifunctional calmodulin-dependent protein kinase. FEBS Letters, 1983, 163, 329-334.	2.8	129
116	The Hormonal Control of Glycogen Metabolism. Phosphorylation of Protein Phosphatase Inhibitor-1 in vivo in Response to Adrenaline. FEBS Journal, 1979, 97, 251-256.	0.2	127
117	A comparison of the substrate specificity of MAPKAP kinase-2 and MAPKAP kinase-3 and their activation by cytokines and cellular stress. FEBS Letters, 1996, 392, 209-214.	2.8	126
118	The Amino Acid Sequence of the delta Subunit (Calmodulin) of Rabbit Skeletal Muscle Phosphorylase Kinase. FEBS Journal, 1981, 113, 359-367.	0.2	125
119	Glycogenin is the priming glucosyltransferase required for the initiation of glycogen biogenesis in rabbit skeletal muscle. FEBS Journal, 1988, 176, 391-395.	0.2	124
120	TPL2-mediated activation of ERK1 and ERK2 regulates the processing of pre-TNFα in LPS-stimulated macrophages. Journal of Cell Science, 2008, 121, 149-154.	2.0	124
121	Remarkable similarities between yeast and mammalian protein phosphatases. FEBS Letters, 1989, 250, 601-606.	2.8	122
122	The Rigulation of Glycogen Metabolism. FEBS Journal, 1978, 87, 353-365.	0.2	120
123	Purification and characterisation of the insulin-stimulated protein kinase from rabbit skeletal muscle; close similarity to S6 kinase II. FEBS Journal, 1991, 199, 723-728.	0.2	120
124	Multisite Phosphorylation of Glycogen Synthase from Rabbit Skeletal Muscle. Organisation of the Seven Sites in the Polypeptide Chain. FEBS Journal, 1982, 124, 37-45.	0.2	119
125	Molecular cloning of cDNA encoding the 110 kDa and 21 kDa regulatory subunits of smooth muscle protein phosphatase 1M. FEBS Letters, 1994, 356, 51-55.	2.8	119
126	Interleukin-1 (IL-1) Induces the Lys63-Linked Polyubiquitination of IL-1 Receptor-Associated Kinase 1 To Facilitate NEMO Binding and the Activation of ÎlºBα Kinase. Molecular and Cellular Biology, 2008, 28, 1783-1791.	2.3	119

#	Article	IF	CITATIONS
127	Regulation of protein phosphatase-1G from rabbit/skeletal muscle. 1. Phosphorylation by cAMP-dependent protein kinase at site 2 releases catalytic subunit from the glycogen-bound holoenzyme. FEBS Journal, 1989, 186, 701-709.	0.2	118
128	Cellular Stresses and Cytokines Activate Multiple Mitogen-Activated-Protein Kinase Kinase Homologues in PC12 and KB Cells. FEBS Journal, 1996, 236, 796-805.	0.2	116
129	The Phosphorylation of Rabbit Skeletal Muscle Glycogen Synthase by Glycogen Synthase Kinase-2 and Adenosine-3': 5'-Monophosphate-Dependent Protein Kinase. FEBS Journal, 1976, 68, 31-44.	0.2	114
130	Comparison of the specificities of p70 S6 kinase and MAPKAP kinase-1 identifies a relatively specific substrate for p70 S6 kinase: the N-terminal kinase domain of MAPKAP kinase-1 is essential for peptide phosphorylation. FEBS Letters, 1995, 375, 289-293.	2.8	114
131	The TRAF-associated protein TANK facilitates cross-talk within the lκB kinase family during Toll-like receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17093-17098.	7.1	112
132	Separation of Two Phosphorylase Kinase Phosphatases from Rabbit Skeletal Muscle. FEBS Journal, 1976, 68, 45-54.	0.2	111
133	Phosphorylase Kinase from Rabbit Skeletal Muscle Identification of the Calmodulin-Binding Subunits. FEBS Journal, 1980, 111, 553-561.	0.2	111
134	Identification of the 38-kDa subunit of rabbit skeletal muscle glycogen synthase as glycogenin. FEBS Journal, 1987, 169, 497-502.	0.2	110
135	Evidence for communication between nerve growth factor and protein tyrosine phosphorylation. FEBS Letters, 1990, 271, 119-122.	2.8	110
136	Amino acid sequences at the two sites on glycogen synthetase phosphorylated by cyclic AMP-dependent protein kinase and their dephosphorylation by protein phosphatase-III. FEBS Letters, 1977, 80, 435-442.	2.8	108
137	Glycogen synthetase kinase 2 (CSK 2); The identification of a new protein kinase in skeletal muscle. FEBS Letters, 1974, 47, 162-166.	2.8	107
138	The Hormonal Control of Activity of Skeletal Muscle Phosphorylase Kinase. Phosphorylation of the Enzyme at Two Sites in vivo in Response to Adrenalin. FEBS Journal, 1975, 51, 93-104.	0.2	107
139	Optimising methods for the preservation, capture and identification of ubiquitin chains and ubiquitylated proteins by immunoblotting. Biochemical and Biophysical Research Communications, 2015, 466, 1-14.	2.1	107
140	Analysis of the in vivo phosphorylation state of rabbit skeletal muscle glycogen synthase by fast-atom-bombardment mass spectrometry. FEBS Journal, 1988, 175, 497-510.	0.2	106
141	Use of a drug-resistant mutant of stress-activated protein kinase 2a/p38 to validate the in vivo specificity of SB 203580. FEBS Letters, 1999, 451, 191-196.	2.8	106
142	The Hormonal Control of Activity of Skeletal Muscle Phosphorylase Kinase. Amino-Acid Sequences at the Two Sites of Action of Adenosine-3': 5'-Monophosphate-Dependent Protein Kinase. FEBS Journal, 1975, 51, 79-92.	0.2	105
143	The hormonal control of glycogen metabolism: The amino acid sequence at the phosphorylation site of protein phosphatase inhibitorâ€1. FEBS Letters, 1977, 76, 182-186.	2.8	105
144	The protein phosphatases involved in cellular regulation. Identification of the inhibitor-2 phosphatases in rabbit skeletal muscle. FEBS Journal, 1984, 145, 65-70.	0.2	103

#	Article	IF	CITATIONS
145	Dissection of the Protein Phosphorylation Cascades Involved in Insulin and Growth Factor Action. Biochemical Society Transactions, 1993, 21, 555-567.	3.4	103
146	Identification of protein phosphatase 2A as the major tyrosine hydroxylase phosphatase in adrenal medulla and corpus striatum: evidence from the effects of okadaic acid. FEBS Letters, 1989, 251, 36-42.	2.8	102
147	The E3 ligase HOIL-1 catalyses ester bond formation between ubiquitin and components of the Myddosome in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13293-13298.	7.1	102
148	The protein phosphatases involved in cellular regulation. Primary structure of inhibitor-2 from rabbit skeletal muscle. FEBS Journal, 1986, 155, 173-182.	0.2	101
149	Debranching Enzyme from Rabbit Skeletal Muscle. Purification, Properties and Physiological Role. FEBS Journal, 1975, 51, 105-115.	0.2	100
150	Regulation of protein phosphatase-1G from rabbit skeletal muscle. 2. Catalytic subunit translocation is a mechanism for reversible inhibition of activity toward glycogen-bound substrates. FEBS Journal, 1989, 186, 711-716.	0.2	99
151	PPP1R6, a novel member of the family of glycogen-targetting subunits of protein phosphatase 1. FEBS Letters, 1997, 418, 210-214.	2.8	97
152	Molecular control of the NEMO family of ubiquitin-binding proteins. Nature Reviews Molecular Cell Biology, 2013, 14, 673-685.	37.0	97
153	Effects of the inhibition of p38/RK MAP kinase on induction of five fos and jun genes by diverse stimuli. Oncogene, 1997, 15, 2321-2331.	5.9	95
154	Primary structure of the site on bovine hormone-sensitive lipase phosphorylated by cyclic AMP-dependent protein kinase. FEBS Letters, 1988, 229, 68-72.	2.8	94
155	Two different classes of E2 ubiquitin-conjugating enzymes are required for the mono-ubiquitination of proteins and elongation by polyubiquitin chains with a specific topology. Biochemical Journal, 2008, 409, 723-729.	3.7	94
156	HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib. Blood, 2016, 127, 3237-3252.	1.4	93
157	The protein phosphatases involved in cellular regulation. 1. Modulation of protein phosphatases-1 and 2 A by histone H 1, protamine, polylysine and heparin. FEBS Journal, 1985, 148, 245-251.	0.2	91
158	Phosphorylaseais an allosteric inhibitor of the glycogen and microsomal forms of rat hepatic protein phosphatase-1. FEBS Letters, 1986, 198, 194-202.	2.8	90
159	Two Phases of Inflammatory Mediator Production Defined by the Study of IRAK2 and IRAK1 Knock-in Mice. Journal of Immunology, 2013, 191, 2717-2730.	0.8	89
160	Protein kinase IKKÎ ² -catalyzed phosphorylation of IRF5 at Ser462 induces its dimerization and nuclear translocation in myeloid cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17432-17437.	7.1	89
161	The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways. Cell Death and Differentiation, 2017, 24, 1153-1159.	11.2	89
162	Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3481-E3489.	7.1	88

#	Article	IF	CITATIONS
163	The hormonal control of glycogen metabolism: dephosphorylation of protein phosphatase inhibitor-1 in vivo in response to insulin. FEBS Letters, 1980, 112, 21-24.	2.8	86
164	An unexpected twist to the activation of IKKÎ ² : TAK1 primes IKKÎ ² for activation by autophosphorylation. Biochemical Journal, 2014, 461, 531-537.	3.7	85
165	Purification of the hepatic glycogen-associated form of protein phosphatase-1 by microcystin-Sepharose affinity chromatography. FEBS Letters, 1995, 362, 101-105.	2.8	84
166	Role of protein kinase B and the MAP kinase cascade in mediating the EGFâ€dependent inhibition of glycogen synthase kinase 3 in Swiss 3T3 cells ¹ . FEBS Letters, 1999, 461, 120-124.	2.8	83
167	The Protein Phosphatases Invloved in Cellular Regulation. 4. Classification of Two Homogeneous Myosin Light Chain Phosphatases from Smoth Muscle as Protein Phosphatase-2A1 and 2C, and a Homogeneous Protein Phosphatase from Reticulocytes Active on Protein Synthesis Initiation Factor eIF-2 as Protein Phosphatase-2A2. FEBS Journal. 1983. 132. 283-287.	0.2	82
168	Identification of the Regions on the M110 Subunit of Protein Phosphatase 1M That Interact with the M21 Subunit and with Myosin. FEBS Journal, 1997, 244, 931-939.	0.2	82
169	The control of phosphorylase kinase phosphatase by "second site phosphorylationâ€; A new form of enzyme regulation. FEBS Letters, 1973, 34, 43-47.	2.8	81
170	The protein phosphatases involved in cellular regulation. Comparison of native and reconstituted Mg-ATP-dependent protein phosphatases from rabbit skeletal muscle. FEBS Journal, 1984, 145, 57-64.	0.2	81
171	The protein kinasemosactivates MAP kinase kinase in vitro and stimulates the MAP kinase pathway in mammalian somatic cells in vivo. FEBS Letters, 1993, 333, 183-187.	2.8	81
172	Activation of phosphorylase kinase from rabbit skeletal muscle by calmodulin and troponin. FEBS Letters, 1979, 104, 25-30.	2.8	80
173	A Reinvestigation of the Phosphorylation of Rabbit Skeletal-Muscle Glycogen Synthase by Cyclic-AMP-Dependent Protein Kinase. Identification of the Third Site of Phosphorylation as Serine-7. FEBS Journal, 1981, 115, 405-413.	0.2	80
174	The glycogen-binding subunit of protein phosphatase-1g from rabbit skeletal muscle. Further characterisation of its structure and glycogen-binding properties. FEBS Journal, 1989, 180, 457-465.	0.2	80
175	The molecular mechanism by which adrenalin inhibits glycogen synthesis. FEBS Journal, 1991, 199, 713-722.	0.2	79
176	Signalling pathways involved in multisite phosphorylation of the transcription factor ATF-2. FEBS Letters, 2004, 572, 177-183.	2.8	79
177	Purification and characterisation of p99, a nuclear modulator of protein phosphatase 1 activity. FEBS Letters, 1997, 420, 57-62.	2.8	78
178	The broad specificity protein phosphatase from mammalian liver. FEBS Letters, 1980, 119, 9-15.	2.8	77
179	Isolation and characterisation of cyclic AMP-dependent phosphorylation sites from rat liver ribosomal protein S6. FEBS Letters, 1982, 140, 263-269.	2.8	77
180	KESTREL: a powerful method for identifying the physiological substrates of protein kinases. Biochemical Journal, 2006, 393, 1-6.	3.7	77

#	Article	IF	CITATIONS
181	Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling. Biochemical and Biophysical Research Communications, 2016, 474, 452-461.	2.1	77
182	Purification and Physicochemical Properties of ATP Citrate (pro-3S) Lyase from Lactating Rat Mammary Gland and Studies of Its Reversible Phosphorylation. FEBS Journal, 1981, 114, 399-405.	0.2	76
183	The protein phosphatases involved in cellular regulation. Evidence that dephosphorylation of glycogen phosphorylase and glycogen synthase in the glycogen and microsomal fractions of rat liver are catalysed by the same enzyme: protein phosphatase-1. FEBS Journal, 1986, 156, 101-110.	0.2	76
184	Stimulation of enzyme activities by fragments of calmodulin. FEBS Letters, 1981, 130, 141-145.	2.8	75
185	Calsequestrin, Myosin, and the Components of the Protein-Glycogen Complex in Rabbit Skeletal Muscle. FEBS Journal, 1978, 86, 511-518.	0.2	72
186	MAP kinase kinase from rabbit skeletal muscle A novel dual specificity enzyme showing homology to yeast protein kinases involved in pheromone-dependent signal transduction. FEBS Letters, 1992, 308, 183-189.	2.8	71
187	Identification of high levels of protein phosphatase-1 in rat liver nuclei. FEBS Letters, 1986, 203, 197-202.	2.8	70
188	Multisite phosphorylation of the glycogen-binding subunit of protein phosphatase-1G by cyclic AMP-dependent protein kinase and glycogen synthase kinase-3. FEBS Letters, 1989, 248, 67-72.	2.8	70
189	Identification of the phosphorylation sites on the E3 ubiquitin ligase Pellino that are critical for activation by IRAK1 and IRAK4. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4584-4590.	7.1	70
190	ABIN1 Dysfunction as a Genetic Basis for Lupus Nephritis. Journal of the American Society of Nephrology: JASN, 2013, 24, 1743-1754.	6.1	70
191	Targetting of protein phosphatase 1 to the sarcoplasmic reticulum of rabbit skeletal muscle by a protein that is very similar or identical to the G subunit that directs the enzyme to glycogen. FEBS Journal, 1990, 189, 243-249.	0.2	69
192	The mechanism of activation of IRAK1 and IRAK4 by interleukin-1 and Toll-like receptor agonists. Biochemical Journal, 2017, 474, 2027-2038.	3.7	69
193	Identification of a calmodulin-dependent glycogen synthase kinase in rabbit skeletal muscle, distinct from phosphorylase kinase. FEBS Letters, 1982, 148, 5-11.	2.8	68
194	A Kinetic Analysis of the Effects of Inhibitor-1 and Inhibitor-2 on the Activity of Protein Phosphatase-1. FEBS Journal, 1983, 132, 309-313.	0.2	68
195	The protein phosphatases involved in cellular regulation. Influence of polyamines on the activities of protein phosphatase-2A. FEBS Journal, 1985, 149, 305-314.	0.2	68
196	Phosphorylation of the glycogen-binding subunit of protein phosphatase-1G by cyclic-AMP-dependent protein kinase promotes translocation of the phosphatase from glycogen to cytosol in rabbit skeletal muscle. FEBS Journal, 1986, 161, 763-769.	0.2	67
197	The regulation of fatty acid biosynthesis. FEBS Letters, 1978, 91, 1-7.	2.8	66
198	Further evidence that inhibitor-2 acts like a chaperone to fold PP1 into its native conformation. FEBS Letters, 1996, 397, 235-238.	2.8	66

#	Article	IF	CITATIONS
199	The tRNA methylase METTL1 is phosphorylated and inactivated by PKB and RSK in vitro and in cells. EMBO Journal, 2005, 24, 1696-1705.	7.8	66
200	Identification of two isoenzymes of protein phosphatase 2C in both rabbit skeletal muscle and liver. FEBS Journal, 1987, 166, 713-722.	0.2	64
201	The role of TBK1 and IKKϵ in the expression and activation of Pellino 1. Biochemical Journal, 2011, 434, 537-548.	3.7	64
202	Phosphorylation of cytosolic phospholipase A2 in platelets is mediated by multiple stress-activated protein kinase pathways. FEBS Journal, 1999, 265, 195-203.	0.2	63
203	Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon β. Biochemical Journal, 2017, 474, 1163-1174.	3.7	63
204	Guidelines for the effective use of chemical inhibitors of protein function to understand their roles in cell regulation. Biochemical Journal, 2010, 425, 53-54.	3.7	62
205	Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2). Journal of Medicinal Chemistry, 2015, 58, 183-196.	6.4	62
206	A novel UBA and UBX domain protein that binds polyubiquitin and VCP and is a substrate for SAPKs. Biochemical Journal, 2004, 384, 391-400.	3.7	61
207	Optineurin Negatively Regulates Osteoclast Differentiation by Modulating NF-κB and Interferon Signaling: Implications for Paget's Disease. Cell Reports, 2015, 13, 1096-1102.	6.4	61
208	Isolation and characterisation of active fragments of protein phosphatase inhibitor-1 from rabbit skeletal muscle. FEBS Letters, 1982, 147, 54-58.	2.8	60
209	The phosphorylation of CapZ-interacting protein (CapZIP) by stress-activated protein kinases triggers its dissociation from CapZ. Biochemical Journal, 2005, 389, 127-135.	3.7	60
210	Roles for TAB1 in regulating the IL-1-dependent phosphorylation of the TAB3 regulatory subunit and activity of the TAK1 complex. Biochemical Journal, 2008, 409, 711-722.	3.7	59
211	Debranching enzyme from rabbit skeletal muscle; Evidence for the location of two active centres on a single polypeptide chain. FEBS Letters, 1975, 58, 181-185.	2.8	58
212	Dephosphorylation and activation of Acetyl-CoA-carboxylase from lactating rabbit mammary gland. FEBS Letters, 1979, 103, 333-338.	2.8	58
213	Regulation of the Aminoacyl-tRNA Synthetase Complex of Rat Liver by Phosphorylation/Dephosphorylation in vitro and in vivo. FEBS Journal, 1982, 129, 57-65.	0.2	58
214	The substrate specificity of cyclic AMP-dependent protein kinase: Amino acid sequences at the phosphorylation sites of herring protamine (clupeine). FEBS Letters, 1978, 86, 92-98.	2.8	57
215	The Hormonal Control of Glycogen Metabolism in Mammalian Muscle by Multivalent Phosphorylation. Biochemical Society Transactions, 1979, 7, 459-480.	3.4	57
216	Further studies on the role of glycogenin in glycogen biosynthesis. FEBS Journal, 1990, 189, 199-204.	0.2	57

#	Article	IF	CITATIONS
217	The Molecular Basis of Skeletal Muscle Phosphorylase Kinase Deficiency. FEBS Journal, 1976, 66, 347-356.	0.2	56
218	A myofibrillar protein phosphatase from rabbit skeletal muscle contains the beta isoform of protein phosphatase-1 complexed to a regulatory subunit which greatly enhances the dephosphorylation of myosin. FEBS Journal, 1992, 210, 1037-1044.	0.2	56
219	Purification and Physicochemical Properties of Fatty Acid Synthetase and Acetyl-CoA Carboxylase from Lactating Rabbit Mammary Gland. FEBS Journal, 1978, 92, 25-34.	0.2	55
220	The protein phosphatases involved in cellular regulation. Antibody to protein phosphatase-2A as a probe of phosphatase structure and function. FEBS Journal, 1984, 145, 51-56.	0.2	55
221	The amino acid sequence of rabbit skeletal muscle glycogenin. FEBS Journal, 1989, 185, 119-125.	0.2	55
222	Nuts and bolts of the salt-inducible kinases (SIKs). Biochemical Journal, 2021, 478, 1377-1397.	3.7	55
223	Characterization of the reversible phosphorylation and activation of ERK8. Biochemical Journal, 2006, 394, 365-373.	3.7	54
224	Differential phosphorylation of ribosomal protein S6 in isolated rat hepatocytes after incubation with insulin and glucagon. FEBS Letters, 1982, 148, 207-213.	2.8	53
225	Participation of a Stress-Activated Protein Kinase Cascade in the Activation of Tyrosine Hydroxylase in Chromaffin Cells. FEBS Journal, 1997, 247, 1180-1189.	0.2	53
226	The major myosin phosphatase in skeletal muscle is a complex between the $\hat{1}^2$ -isoform of protein phosphatase 1 and the MYPT2 gene product. FEBS Letters, 1998, 438, 141-144.	2.8	53
227	Roles of the AMP-activated and cyclic-AMP-dependent protein kinases in the adrenaline-induced inactivation of acetyl-CoA carboxylase in rat adipocytes. FEBS Journal, 1990, 187, 199-205.	0.2	51
228	Identification of the protein kinases that activate the E3 ubiquitin ligase Pellino 1 in the innate immune system. Biochemical Journal, 2012, 441, 339-346.	3.7	51
229	HOILâ€1 ubiquitin ligase activity targets unbranched glucosaccharides and is required to prevent polyglucosan accumulation. EMBO Journal, 2022, 41, e109700.	7.8	51
230	SKK4, a novel activator of stress-activated protein kinase-1 (SAPK1/JNK). FEBS Letters, 1997, 414, 153-158.	2.8	50
231	Multisite phosphorylation of glycogen synthase from rabbit skeletal muscle. Identification of the sites phosphorylated by casein kinase-I. FEBS Journal, 1985, 151, 39-48.	0.2	49
232	Further studies on the structure of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. FEBS Journal, 1987, 163, 253-258.	0.2	49
233	The protein phosphatases of Drosophila melanogaster and their inhibitors. FEBS Journal, 1987, 164, 31-38.	0.2	49
234	IL–1β-stimulated activation of ERK1/2 and p38α MAPK mediates the transcriptional up-regulation of IL–6, IL–8 and GRO-α in HeLa cells. Cellular Signalling, 2008, 20, 375-380.	3.6	49

#	Article	IF	CITATIONS
235	Distribution of isoenzymes of the glycogenolytic cascade in different types of muscle fibre. FEBS Letters, 1976, 67, 17-22.	2.8	47
236	Phosphotyrosine Residues in the Nerve-Growth-Factor Receptor (Trk-A). Their Role in the Activation of Inositolphospholipid Metabolism and Protein Kinase Cascades in Phaeochromocytoma (PC 12) Cells. FEBS Journal, 1995, 234, 84-91.	0.2	47
237	Regions of the 110-kDa Regulatory Subunit M110 Required for Regulation of Myosin-Light-Chain-Phosphatase Activity in Smooth Muscle. FEBS Journal, 1996, 239, 326-332.	0.2	47
238	Suppression of IRAK1 or IRAK4 Catalytic Activity, but Not Type 1 IFN Signaling, Prevents Lupus Nephritis in Mice Expressing a Ubiquitin Binding–Defective Mutant of ABIN1. Journal of Immunology, 2016, 197, 4266-4273.	0.8	46
239	Structural and functional studies on rabbit liver glycogenin. FEBS Journal, 1989, 183, 205-209.	0.2	45
240	Identification of three in vivo phosphorylation sites on the glycogen-binding subunit of protein phosphatase 1 from rabbit skeletal muscle, and their response to adrenaline. FEBS Letters, 1990, 259, 281-285.	2.8	45
241	Identification of different specificity requirements between SGK1 and PKBα. FEBS Letters, 2005, 579, 991-994.	2.8	45
242	Comparison of calmodulin-dependent glycogen synthase kinase from skeletal muscle and calmodulin-dependent protein kinase-II from brain. FEBS Letters, 1984, 170, 49-54.	2.8	44
243	The myosin-bound form of protein phosphatase 1 (PP-1M) is the enzyme that dephosphorylates native myosin in skeletal and cardiac muscles. Biochimica Et Biophysica Acta - Molecular Cell Research, 1988, 971, 163-169.	4.1	44
244	p53-Driven apoptosis limits centrosome amplification and genomic instability downstream of NPM1 phosphorylation. Nature Cell Biology, 2008, 10, 723-730.	10.3	44
245	Regulation of the activity and expression of ERK8 by DNA damage. FEBS Letters, 2009, 583, 680-684.	2.8	44
246	Okadaic acid-sensitive protein phosphatases dephosphorylate MARCKS, a major protein kinase C substrate. FEBS Letters, 1993, 336, 37-42.	2.8	42
247	Interleukin-1 stimulated activation of the COT catalytic subunit through the phosphorylation of Thr290 and Ser62. FEBS Letters, 2006, 580, 4010-4014.	2.8	42
248	Identification of filamin C as a new physiological substrate of PKBα using KESTREL. Biochemical Journal, 2004, 384, 489-494.	3.7	41
249	Comparative properties of glycogen phosphorylases. 11. Comparative study of dogfish and rabbit muscle phosphorylases. Biochemistry, 1973, 12, 5233-5241.	2.5	40
250	Evidence for the involvement of protein phosphatase-1 in the regulation of metabolic processes other than glycogen metabolism. FEBS Letters, 1978, 92, 68-72.	2.8	40
251	The discovery of protein phosphatases: From chaos and confusion to an understanding of their role in cell regulation and human disease. BioEssays, 1994, 16, 583-588.	2.5	40
252	Synthesis and structure–activity relationships of a novel series of pyrimidines as potent inhibitors of TBK1/IKKε kinases. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7169-7173.	2.2	40

#	Article	IF	CITATIONS
253	Rat mammary gland ATP-citrate lyase is phosphorylated by cyclic AMP-dependent protein kinase. FEBS Letters, 1980, 109, 205-208.	2.8	39
254	Phosphorylation of the glycogen-binding subunit of protein phosphatase-1G in response to adrenalin. FEBS Letters, 1988, 234, 189-194.	2.8	39
255	Essential Role for IKKβ in Production of Type 1 Interferons by Plasmacytoid Dendritic Cells. Journal of Biological Chemistry, 2012, 287, 19216-19228.	3.4	39
256	Phosphorylation of rabbit skeletal muscle phosphorylase kinase by cyclic GMP-dependent protein kinase. FEBS Letters, 1980, 119, 301-306.	2.8	37
257	Amino acid sequence at the site on rabbit skeletal muscle glycogen synthase phosphorylated by the endogenous glycogen synthase kinase-2 activity. FEBS Letters, 1979, 98, 71-75.	2.8	36
258	Identification of protein phosphatases-1 and 2A and inhibitor-2 in oocytes of the starfish Asterias rubens and Marthasterias glacialis. FEBS Journal, 1987, 167, 135-140.	0.2	36
259	Identification of a latent MAP kinase kinase kinase in PC12 cells as B-raf. FEBS Letters, 1994, 350, 13-18.	2.8	36
260	The threonine residues in MAP kinase kinase 1 phosphorylated by MAP kinase in vitro are also phosphorylated in nerve growth factor-stimulated rat phaeochromocytoma (PC12) cells. FEBS Letters, 1994, 341, 119-124.	2.8	36
261	Skeletal muscle phosphorylase kinase deficiency: Detection of a protein lacking any activity in ICR/IAn mice. FEBS Letters, 1973, 29, 113-116.	2.8	35
262	Immune diseases caused by mutations in kinases and components of the ubiquitin system. Nature Immunology, 2014, 15, 521-529.	14.5	35
263	A non-radioactive method for the assay of many serine/threonine-specific protein kinases. Biochemical Journal, 2002, 366, 977-981.	3.7	34
264	Pellino1 Is Required for Interferon Production by Viral Double-stranded RNA*. Journal of Biological Chemistry, 2012, 287, 34825-34835.	3.4	33
265	Glycogen synthase kinase-2 from rabbit skeletal muscle is activated by the calcium-dependent regulator protein. FEBS Letters, 1979, 98, 76-80.	2.8	32
266	Identification of calcium-regulated heat-stable protein of 24ÂkDa (CRHSP24) as a physiological substrate for PKB and RSK using KESTREL. Biochemical Journal, 2005, 389, 775-783.	3.7	31
267	Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3. Biochemical Journal, 2017, 474, 2235-2248.	3.7	29
268	DEAF1 Is a Pellino1-interacting Protein Required for Interferon Production by Sendai Virus and Double-stranded RNA*. Journal of Biological Chemistry, 2013, 288, 24569-24580.	3.4	28
269	15-Deoxy-Δ12,14-prostaglandin J2 Regulates Endogenous Cot MAPK Kinase Kinase 1 Activity Induced by Lipopolysaccharide. Journal of Biological Chemistry, 2003, 278, 52124-52130.	3.4	27
270	Phosphorylation of the ARE-binding protein DAZAP1 by ERK2 induces its dissociation from DAZ. Biochemical Journal, 2006, 399, 265-273.	3.7	27

#	Article	IF	CITATIONS
271	Amino acid sequence of a region in rabbit skeletal muscle glycogen synthase phosphorylated by cyclic AMP-dependent protein kinase. FEBS Letters, 1981, 123, 332-336.	2.8	24
272	Is Phosphorylase Phosphatase a Manganese Metalloenzyme?. Biochemical Society Transactions, 1978, 6, 220-222.	3.4	23
273	Amino acid sequence of a region on the glycogen-binding subunit of protein phosphatase-1 phosphorylated by cyclic AMP-dependent protein kinase. FEBS Letters, 1986, 194, 85-90.	2.8	23
274	Arsenite blocks growth factor induced activation of the MAP kinase cascade, upstream of Ras and downstream of Grb2-Sos. Oncogene, 1998, 17, 19-24.	5.9	23
275	IKK \hat{I}^2 is required for the formation of the NLRP3 inflammasome. EMBO Reports, 2021, 22, e50743.	4.5	23
276	Purification and Subunit Structure of Glycogen-Branching Enzyme from Rabbit Skeletal Muscle. FEBS Journal, 1980, 109, 391-394.	0.2	22
277	Cloning and Expression of Cytosolic Phospholipase A2 (cPLA2) and a Naturally Occurring Variant. Phosphorylation of Ser505 of Recombinant cPLA2 by p42 Mitogen-activated Protein Kinase Results in an Increase in Specific Activity. FEBS Journal, 1996, 238, 690-697.	0.2	22
278	Dimeric Structure of the Pseudokinase IRAK3 Suggests an Allosteric Mechanism for Negative Regulation. Structure, 2021, 29, 238-251.e4.	3.3	22
279	Classification of an eIF-2 phosphatase as a type-2 protein phosphatase. FEBS Letters, 1980, 119, 16-19.	2.8	21
280	Identification of a MAP kinase kinase kinase in phaeochromocytoma (PC12) cells. FEBS Letters, 1992, 314, 461-465.	2.8	21
281	The regulation of protein function by multisite phosphorylation. Trends in Biochemical Sciences, 1976, 1, 38-40.	7.5	20
282	Identification of a Phosphorylation Site on Skeletal Muscle Myosin Light Chain Kinase That Becomes Phosphorylated during Muscle Contraction. Archives of Biochemistry and Biophysics, 2002, 397, 224-231.	3.0	19
283	Repurposed floxacins targeting RSK4 prevent chemoresistance and metastasis in lung and bladder cancer. Science Translational Medicine, 2021, 13, .	12.4	19
284	Structure and Regulation of Enzymes for the Degradation and Resynthesis of Glycogen. Biochemical Society Transactions, 1975, 3, 849-854.	3.4	18
285	Regulation of Microfilament Organization by Kaposi Sarcoma-associated Herpes Virus-cyclin·CDK6 Phosphorylation of Caldesmon. Journal of Biological Chemistry, 2005, 280, 35844-35858.	3.4	18
286	IRAK1-independent pathways required for the interleukin-1-stimulated activation of the Tpl2 catalytic subunit and its dissociation from ABIN2. Biochemical Journal, 2009, 424, 109-118.	3.7	18
287	Distinct signals and immune cells drive liver pathology and glomerulonephritis in ABIN1[D485N] mice. Life Science Alliance, 2019, 2, e201900533.	2.8	17
288	Hormones, second messengers and the reversible phosphorylation of proteins: An overview. BioEssays, 1985, 2, 63-68.	2.5	16

#	Article	IF	CITATIONS
289	An essential role for calmodulin in regulating human T cell aggregation. FEBS Letters, 2001, 491, 131-136.	2.8	16
290	HOILâ€1â€catalysed, esterâ€linked ubiquitylation restricts ILâ€18 signaling in cytotoxic T cells but promotes TLR signalling in macrophages. FEBS Journal, 2021, 288, 5909-5924.	4.7	16
291	Insulin activates glycogen synthase in phosphorylase kinase deficient mice. FEBS Letters, 1979, 105, 235-238.	2.8	15
292	The myosin-bound form of protein phosphatase 1 (PP-1M) is the enzyme that dephosphorylates native myosin in skeletal and cardiac muscles. Biochimica Et Biophysica Acta - Bioenergetics, 1988, 971, 163-169.	1.0	15
293	Regulation of Glycogen Phosphorylase and Glycogen Synthase by Adrenalin in Soleus Muscle of Phosphorylase-Kinase-Deficient Mice. FEBS Journal, 1981, 115, 619-625.	0.2	15
294	<scp>TAK</scp> 1 Inhibition in the <scp>DFG</scp> â€Out Conformation. Chemical Biology and Drug Design, 2013, 82, 500-505.	3.2	15
295	Suppression of interferon Î ² gene transcription by inhibitors of bromodomain and extra-terminal (BET) family members. Biochemical Journal, 2015, 468, 363-372.	3.7	15
296	Separation of Two Phosphorylase Kinase Phosphatase Activities in Rabbit Skeletal Muscle. Biochemical Society Transactions, 1975, 3, 83-84.	3.4	14
297	The Purification and Characterization of Protein Phosphatase Inhibitor-1 from Rabbit Skeletal Muscle. Biochemical Society Transactions, 1978, 6, 17-20.	3.4	14
298	HOIL-1, an atypical E3 ligase that controls MyD88 signalling by forming ester bonds between ubiquitin and components of the Myddosome. Advances in Biological Regulation, 2020, 75, 100666.	2.3	14
299	Salt-inducible kinases are required for the IL-33–dependent secretion of cytokines and chemokines in mast cells. Journal of Biological Chemistry, 2021, 296, 100428.	3.4	14
300	ABIN2 Function Is Required To Suppress DSS-Induced Colitis by a Tpl2-Independent Mechanism. Journal of Immunology, 2018, 201, 3373-3382.	0.8	11
301	Salt-inducible kinases (SIKs) regulate TGFβ-mediated transcriptional and apoptotic responses. Cell Death and Disease, 2020, 11, 49.	6.3	11
302	Targeting IRAK1/IRAK4 Signaling in Waldenstrom's Macroglobulinemia. Blood, 2015, 126, 4004-4004.	1.4	11
303	An important role for A20-binding inhibitor of nuclear factor-kB-1 (ABIN1) in inflammation-mediated endothelial dysfunction: an in vivo study in ABIN1 (D485N) mice. Arthritis Research and Therapy, 2015, 17, 22.	3.5	10
304	Salt inducible kinases 2 and 3 are required for thymic T cell development. Scientific Reports, 2021, 11, 21550.	3.3	9
305	13 Activation of the novel MAP kinase homologue SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6). Biochemical Society Transactions, 1997, 25, S569-S569.	3.4	8
306	Kinase drug discovery 20 years after imatinib. Nature Reviews Drug Discovery, 2022, , .	46.4	8

#	Article	IF	CITATIONS
307	Ubiquitin chains as second messengers. Nature Reviews Molecular Cell Biology, 2018, 19, 212-212.	37.0	7
308	Glycogen Synthetase Kinase 2 and Adenosine 3′:5′-Cyclic Monophosphate-Independent Protein Kinase Activities in Rabbit Skeletal Muscle. Biochemical Society Transactions, 1975, 3, 85-86.	3.4	5
309	Protein Phosphorylation and Hormone Action. Novartis Foundation Symposium, 1976, 41, 281-295.	1.1	4
310	Demonstration of the Control of Rabbit Skeletal-Muscle Phosphorylase Kinase Activity in vivo by Adenosine 3′5′-Cyclic Monophosphate-Dependent Protein Kinase. Biochemical Society Transactions, 1974, 2, 931-932.	3.4	3
311	The role of calcium ions, calmodulin and troponin in the regulation of glycogen metabolism in mammalian skeletal muscle. Biochemical Society Transactions, 1981, 9, 379-380.	3.4	3
312	15 A stress-activated kinase cascade can mediate the activation of tyrosine hydroxylase in chromaffin cells. Biochemical Society Transactions, 1997, 25, S571-S571.	3.4	3
313	Prevention and partial reversion of the lupus phenotype in ABIN1[D485N] mice by an IRAK4 inhibitor. Lupus Science and Medicine, 2021, 8, e000573.	2.7	3
314	Isolation of a Unique Phosphopeptide from Skeletal-Muscle Phosphorylase Kinase, Labelled During Activation by Adenosine 3′:5′-Cyclic Monophosphate-Dependent Protein Kinase. Biochemical Society Transactions, 1974, 2, 82-83.	3.4	2
315	The Role of Calmodulin in Regulation of Glycogen Metabolism. Biochemical Society Transactions, 1979, 7, 622-624.	3.4	2
316	Keep Nibbling at the Edges. Journal of Biological Chemistry, 2009, 284, 23891-23901.	3.4	2
317	Glycogen Synthase Kinase 3. , 2010, , 569-573.		2
318	The NEDD8 E3 ligase DCNL5 is phosphorylated by IKK alpha during Toll-like receptor activation. PLoS ONE, 2018, 13, e0199197.	2.5	2
319	Identification of a calmodulin-binding subunit on phosphorylase kinase. Biochemical Society Transactions, 1980, 8, 387-387.	3.4	1
320	PROTEIN PHOSPHORYLATION AND THE REGULATION OF ENZYME ACTIVITY. Biochemical Society Transactions, 1981, 9, 79P-79P.	3.4	1
321	Why are the phenotypes of TRAF6 knock-in and TRAF6 knock-out mice so different?. PLoS ONE, 2022, 17, e0263151.	2.5	1
322	IDENTIFICATION OF TWO CLASSES OF BROAD SUBSTRATE SPECIFICITY PROTEIN PHOSPHATASE IN MAMMALIAN TISSUES. Biochemical Society Transactions, 1981, 9, 241P-241P.	3.4	0
323	Bill Whelan's impact on my life and career. Molecular Aspects of Medicine, 2015, 46, 11-13.	6.4	0