Farid Nasir Ani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1260474/publications.pdf

Version: 2024-02-01

109321 79698 5,701 116 35 73 citations h-index g-index papers 116 116 116 6702 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable and Sustainable Energy Reviews, 2015, 52, 1282-1293.	16.4	629
2	Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors – A review. Journal of Power Sources, 2014, 263, 338-360.	7.8	360
3	Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon, 2002, 40, 2381-2386.	10.3	326
4	Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresource Technology, 2012, 118, 382-389.	9.6	307
5	The development supercapacitor from activated carbon by electroless platingâ€"A review. Renewable and Sustainable Energy Reviews, 2015, 42, 823-834.	16.4	306
6	A review on microwave assisted pyrolysis of coal and biomass for fuel production. Renewable and Sustainable Energy Reviews, 2014, 39, 555-574.	16.4	274
7	Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renewable and Sustainable Energy Reviews, 2016, 53, 741-753.	16.4	267
8	Microwave induced pyrolysis of oil palm biomass. Bioresource Technology, 2011, 102, 3388-3395.	9.6	261
9	Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy Conversion and Management, 2019, 180, 1260-1267.	9.2	214
10	Review on bioethanol as alternative fuel for spark ignition engines. Renewable and Sustainable Energy Reviews, 2016, 56, 820-835.	16.4	182
11	Fruit waste as feedstock for recovery by pyrolysis technique. International Biodeterioration and Biodegradation, 2016, 113, 325-333.	3.9	157
12	Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer. Journal of Analytical and Applied Pyrolysis, 2012, 96, 162-172.	5.5	145
13	A review on oil palm empty fruit bunch fiberâ€reinforced polymer composite materials. Polymer Composites, 2010, 31, 2079-2101.	4.6	135
14	Dielectric properties and microwave heating of oil palm biomass and biochar. Industrial Crops and Products, 2013, 50, 366-374.	5.2	128
15	Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber. Bioresource Technology, 2015, 190, 442-450.	9.6	122
16	Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and itscharacterisation. Renewable Energy, 1999, 17, 73-84.	8.9	116
17	Pyrolysis of oil palm empty fruit bunch biomass pellets using multimode microwave irradiation. Bioresource Technology, 2012, 125, 102-107.	9.6	109
18	An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor. Energy Conversion and Management, 2015, 101, 778-786.	9.2	76

#	Article	IF	Citations
19	A new technique to pyrolyse biomass in a microwave system: Effect of stirrer speed. Bioresource Technology, 2013, 128, 578-585.	9.6	7 5
20	Production of liquid biofuels (biodiesel and bioethanol) from brown marine macroalgae Padina tetrastromatica. Energy Conversion and Management, 2017, 135, 351-361.	9.2	74
21	Solar absorption systems with integrated absorption energy storage–A review. Renewable and Sustainable Energy Reviews, 2018, 82, 1602-1610.	16.4	72
22	Date palm waste gasification in downdraft gasifier and simulation using ASPEN HYSYS. Energy Conversion and Management, 2014, 88, 693-699.	9.2	69
23	Bioethanol production from sago pith waste using microwave hydrothermal hydrolysis accelerated by carbon dioxide. Applied Energy, 2014, 128, 277-283.	10.1	67
24	Modified phyto-waste Terminalia catappa fruit shells: a reusable adsorbent for the removal of micropollutant diclofenac. RSC Advances, 2015, 5, 30950-30962.	3.6	61
25	Optimization and characterization of biodiesel production from microalgae Botryococcus grown at semi-continuous system. Energy Conversion and Management, 2014, 88, 936-946.	9.2	60
26	Fuel production from microwave assisted pyrolysis of coal with carbon surfaces. Energy Conversion and Management, 2016, 110, 142-153.	9.2	57
27	Microwave dielectric properties of Malaysian palm oil and agricultural industrial biomass and biochar during pyrolysis process. Fuel Processing Technology, 2017, 166, 164-173.	7.2	57
28	Microwave torrefaction for viable fuel production: A review on theory, affecting factors, potential and challenges. Fuel, 2019, 253, 512-526.	6.4	57
29	Optimization studies of microwave-induced co-pyrolysis of empty fruit bunches/waste truck tire using response surface methodology. Journal of Cleaner Production, 2020, 244, 118649.	9.3	53
30	Microwave pyrolysis for valorisation of horse manure biowaste. Energy Conversion and Management, 2020, 220, 113074.	9.2	52
31	Impact of metals on corrosive behavior of biodiesel–diesel–ethanol (BDE) alternative fuel. Renewable Energy, 2016, 94, 1-9.	8.9	49
32	Microwave-assisted production of optimized pyrolysis liquid oil from oil palm fiber. Journal of Cleaner Production, 2018, 182, 404-413.	9.3	48
33	Performance characteristics of a solar driven lithium bromide-water absorption chiller integrated with absorption energy storage. Energy Conversion and Management, 2017, 150, 188-200.	9.2	47
34	Microwave-assisted and carbonaceous catalytic pyrolysis of crude glycerol from biodiesel waste for energy production. Energy Conversion and Management, 2017, 143, 399-409.	9.2	42
35	Carbon molecular sieves produced from oil palm shell for air separation. Separation and Purification Technology, 2004, 35, 47-54.	7.9	41
36	Phenol-rich bio-oil derivation via microwave-induced fast pyrolysis of oil palm empty fruit bunch with activated carbon. Environmental Technology and Innovation, 2021, 21, 101291.	6.1	31

#	Article	IF	CITATIONS
37	Numerical and experimental study of an ejector as an expansion device in split-type air conditioner for energy savings. Energy and Buildings, 2014, 79, 98-105.	6.7	30
38	Microwave assisted acid hydrolysis for bioethanol fuel production from sago pith waste. Waste Management, 2019, 86, 80-86.	7.4	29
39	A study on large scale cultivation of Microcystis aeruginosa under open raceway pond at semi-continuous mode for biodiesel production. Bioresource Technology, 2014, 172, 186-193.	9.6	28
40	Microwave-induced pyrolysis of waste truck tyres with carbonaceous susceptor for the production of diesel-like fuel. Journal of the Energy Institute, 2019, 92, 1831-1841.	5.3	28
41	Review of Limiting Issues in Industrialization and Scale-up of Microwave-Assisted Activated Carbon Production. Industrial & Damp; Engineering Chemistry Research, 2014, 53, 12185-12191.	3.7	23
42	Microwave induced plasma for solid fuels and waste processing: A review on affecting factors and performance criteria. Waste Management, 2017, 69, 423-430.	7.4	21
43	A detailed parametric study of a solar driven double-effect absorption chiller under various solar radiation data. Journal of Cleaner Production, 2020, 251, 119750.	9.3	21
44	Economic analysis of a novel solar-assisted air conditioning system with integral absorption energy storage. Journal of Cleaner Production, 2021, 291, 125918.	9.3	20
45	Corrosive characteristics of bioethanol and gasoline blends for metals. International Journal of Energy Research, 2016, 40, 1704-1711.	4.5	16
46	Electroless nano zinc oxide–activate carbon composite supercapacitor electrode. Journal of Electroceramics, 2016, 36, 122-128.	2.0	16
47	The Tribological Characteristic of the Blends of Rbd Palm Olein with Mineral Oil Using Four-ball Tribotester. Jurnal Teknologi (Sciences and Engineering), 2014, 69, .	0.4	14
48	Charging and discharging characteristics of absorption energy storage integrated with a solar driven double-effect absorption chiller for air conditioning applications. Journal of Energy Storage, 2020, 29, 101374.	8.1	14
49	The Utilization Potential of Rice Husk as an Alternative Energy Source for Power Plants in Indonesia. Advanced Materials Research, 0, 845, 494-498.	0.3	12
50	Numerical Study of Ejector as an Expansion Device in Split-Type Air Conditioner. Applied Mechanics and Materials, 0, 388, 101-105.	0.2	12
51	Microwave Assisted Pyrolysis of Waste Biomass Resources for Bio-Oil Production. Applied Mechanics and Materials, 0, 554, 307-311.	0.2	12
52	Application of selective non-catalytic reduction of NOx in small-scale combustion systems. Atmospheric Environment, 2004, 38, 6823-6828.	4.1	11
53	Antioxidants, Toxicity, and Nitric Oxide Inhibition Properties of Pyroligneous Acid from Palm Kernel Shell Biomass. Waste and Biomass Valorization, 2020, 11, 6307-6319.	3.4	11
54	Diffusional behavior and adsorption capacity of palm shell chars for oxygen and nitrogenâ€"the effect of carbonization temperature. Carbon, 2003, 41, 840-842.	10.3	10

#	Article	IF	CITATIONS
55	Comparing Characteristics of Oil Palm Biochar Using Conventional and Microwave Heating. Jurnal Teknologi (Sciences and Engineering), 2014, 68, .	0.4	10
56	The Characteristics of Oil Palm Shell Biochar and Activated Carbon Produced via Microwave Heating. Applied Mechanics and Materials, 0, 695, 12-15.	0.2	10
57	Numerical Study of an Ejector as an Expansion Device in Split-type Air Conditioners for Energy Savings. Journal of Engineering and Technological Sciences, 2013, 45, 179-192.	0.6	10
58	Heating characteristics of biomass and carbonaceous materials under microwave radiation., 2011,,.		9
59	Fossil fuel energy scenario in Malaysia-prospect of indigenous renewable biomass and coal resources. , 2013, , .		9
60	Investigate Jatropha Oil as New Source of Lubricant Oil. Applied Mechanics and Materials, 0, 465-466, 201-205.	0.2	9
61	Optimization of microwave irradiated - coconut shell activated carbon using response surface methodology for adsorption of benzene and toluene. Desalination and Water Treatment, 2016, 57, 7881-7897.	1.0	9
62	ADVANCEMENT IN THE PRODUCTION OF ACTIVATED CARBON FROM BIOMASS USING MICROWAVE HEATING. Jurnal Teknologi (Sciences and Engineering), 2017, 79, .	0.4	9
63	Palm Fatty Acid Distillate as an Alternative Source for Hydraulic Oil. Applied Mechanics and Materials, 0, 315, 941-945.	0.2	8
64	Energy Savings in Air Conditioning System Using Ejector: An Overview. Applied Mechanics and Materials, 0, 493, 93-98.	0.2	8
65	The Tribological Characteristics of RBD Palm Olein with Jatropha Oil Blend Using Four-Ball Tribotester with Different Normal Loads. Applied Mechanics and Materials, 0, 819, 499-503.	0.2	8
66	Water Absorption of Lignocellulosic Phenolic Composites. Polymers and Polymer Composites, 2008, 16, 379-387.	1.9	7
67	Microwave induced fast pyrolysis of scrap rubber tires. AIP Conference Proceedings, 2012, , .	0.4	7
68	Tribological Features of Refined, Deodorized, and Bleached Palm Olein with Mineral Oil Blend. Tribology Transactions, 2016, 59, 671-678.	2.0	7
69	Utilization of Oil Palm Fiber and Palm Kernel Shell in Various Applications. , 2018, , 45-56.		7
70	Experimental and Simulation Study of Fluidization Behavior of Palm Biomass in a Circulating Fluidized Bed Riser. Industrial & Engineering Chemistry Research, 2013, 52, 17529-17537.	3.7	6
71	Syngas Production from Microwave Gasification of Oil Palm Biochars. Applied Mechanics and Materials, 0, 695, 247-250.	0.2	6
72	Potential Surplus of Rice Straw as a Source of Energy for Rural Communities in Indonesia. Applied Mechanics and Materials, 0, 695, 806-810.	0.2	6

#	Article	IF	Citations
73	Combustion Performance of Diesel Palm Olein Fuel: A Combined CFD and Experimental Approach. Arabian Journal for Science and Engineering, 2018, 43, 1291-1300.	3.0	6
74	Microwave irradiation biodiesel processing of waste cooking oil., 2012,,.		5
75	Wear resistance evaluation of palm fatty acid distillate using four-ball tribotester. , 2012, , .		5
76	The Performances of Fixed and Stirred Bed in Microwave Pyrolysis of Biomass. APCBEE Procedia, 2012, 3, 188-193.	0.5	5
77	Evaluation of the Prospects of Using Solar Thermal Air-Conditioning Systems in Saudi Arabia. Applied Mechanics and Materials, 0, 554, 271-275.	0.2	5
78	Combustion Characteristics Modeling of Rice Husk as Fuel for Power Plant in Indonesia. Applied Mechanics and Materials, 0, 695, 815-819.	0.2	5
79	Heterogeneous Microwave Irradiation Biodiesel Processing of Jatropha Oil. Applied Mechanics and Materials, 0, 554, 500-504.	0.2	5
80	New composites based on low-density polyethylene and rice husk: Elemental and thermal characteristics. Environmental Engineering Research, 2018, 23, 250-257.	2.5	5
81	Wear Resistance Characteristic of Vegetable Oil. Advanced Materials Research, 2013, 795, 42-46.	0.3	4
82	The Effect of Flame Temperature, Nozzle Position and Swirl Gas on Microwave Plasma Flame. Jurnal Teknologi (Sciences and Engineering), 2014, 68, .	0.4	4
83	Application of ANN to Predict S.I. Engine Performance and Emission Characteristics Fuelled Bioethanol. Applied Mechanics and Materials, 0, 554, 454-458.	0.2	4
84	Pyrolysis of Solid Palm Waste Biomass with Microwave Absorber under Microwave Irradiation. Applied Mechanics and Materials, 2014, 606, 73-77.	0.2	4
85	Characteristic of Oil Palm Activated Carbon Produced from Microwave and Conventional Heating. Applied Mechanics and Materials, 0, 819, 606-611.	0.2	4
86	Combustion modelling of an industrial municipal waste combustor in Malaysia. International Journal of Environmental Studies, 2006, 63, 313-329.	1.6	3
87	Preliminary Study on Combustion of Biodiesel for Power Generation. , 2006, , 29.		3
88	Solid Waste Management and Treatment in Malaysia. Applied Mechanics and Materials, 0, 699, 969-974.	0.2	3
89	Bio-Oils Characteristic from Oil Palm Biomass from Different Fast Pyrolysis Techniques. Applied Mechanics and Materials, 2014, 554, 266-270.	0.2	3
90	The Performances of Intimately Mix and Layer Methods in Microwave Assisted Pyrolysis System. Applied Mechanics and Materials, 0, 554, 150-154.	0.2	3

#	Article	IF	CITATIONS
91	MICROWAVE PLASMA GASIFICATION OF OIL PALM BIOCHAR. Jurnal Teknologi (Sciences and Engineering), 2015, 74, .	0.4	3
92	EFFECT OF HEAT TREATMENT ON THE CHARACTERISTICS OF ELECTROLESS ACTIVATED CARBON-NICKEL OXIDE NANOCOMPOSITES. Jurnal Teknologi (Sciences and Engineering), 2017, 79, .	0.4	3
93	Pyrolysis characteristic of rice husk with plastic bag as fuel for power generation by using a thermogravimetric analysis. IOP Conference Series: Earth and Environmental Science, 2018, 105, 012034.	0.3	3
94	The application of gas ejector for road transport air conditioning system. , 2012, , .		2
95	The Effects of Injection Parameters on the Performance of Common Rail Light Duty Engine Fueled with Palm Oil Biodiesel. Applied Mechanics and Materials, 0, 465-466, 322-326.	0.2	2
96	Thermodynamic Analysis of Ejector as an Expansion Device on Split-Type Air Conditioner Using R410A as Working Fluid. Applied Mechanics and Materials, 0, 493, 227-232.	0.2	2
97	Performance and Emission of a Common Rail Passenger Car Engine Fuelled with Palm Oil Biodiesel. Applied Mechanics and Materials, 0, 564, 66-71.	0.2	2
98	Heat distortion temperature and mechanical properties of agricultural wastes-reinforced phenolic composites. Journal of Polymer Engineering, 2016, 36, 641-647.	1.4	2
99	Exergy Analysis on a Split-Type Conditioner Using Ejector as an Expansion Device. Applied Mechanics and Materials, 0, 699, 828-833.	0.2	1
100	Microwave Thermal Conversion of Oil Palm and Related Biomass for Biofuels and Biochars. Applied Mechanics and Materials, 2014, 606, 223-226.	0.2	1
101	Simulation of a Double-Effect Solar Absorption System for Traditional House in Yemen. Applied Mechanics and Materials, 0, 695, 797-800.	0.2	1
102	Emissions from Petrol Engine Fueled Gasoline–Ethanol–Methanol (GEM) Ternary mixture as Alternative Fuel. MATEC Web of Conferences, 2015, 27, 01010.	0.2	1
103	Sustainable Biofuels and Other Related Bio-Products from Palm Cultivations. MATEC Web of Conferences, 2016, 77, 11005.	0.2	1
104	HETEROGENEOUS TRANSESTERIFICATION OF RUBBER SEED OIL BIODIESEL PRODUCTION. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	1
105	Performance of Ejector Refrigeration Cycle for Automotive Air Conditioning. Applied Mechanics and Materials, 0, 819, 202-206.	0.2	1
106	Experimental Investigation on the Use of Secondary Refrigerant in Freezer for Energy Savings. Applied Mechanics and Materials, 0, 493, 233-238.	0.2	0
107	Numerical Analysis of Modified Ejector Cycle on Ejector as an Expansion Device on Residential Air Conditioner. Applied Mechanics and Materials, 2014, 554, 261-265.	0.2	O
108	The Effects of Alkaline Catalysts in Used Frying Oil Biodiesel on the Diesel Engine Performances. Applied Mechanics and Materials, 0, 554, 449-453.	0.2	0

#	Article	IF	CITATIONS
109	Optimization of Biodiesel Production from Transesterification of Waste Cooking Oils Using Alkaline Catalysts. Applied Mechanics and Materials, 0, 695, 289-292.	0.2	0
110	Lubricity of Palm Fatty Acid Distillates at Various Rotational Speeds. Applied Mechanics and Materials, 0, 606, 9-13.	0.2	0
111	THE PERFORMANCES OF A MODIFIED EJECTOR AIR CONDITIONING CYCLE. Jurnal Teknologi (Sciences and) Tj ETO	Qq1_1 0.7	84314 rgBT /
112	THE APPLICATION OF LASER IN THERMAL TREATMENT OF SOLID PARTICLES AND GAS-PHASE OF BIOMASS PROCESSING-A REVIEW. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	0
113	Analysis of an Airfoil Using a Transition and Turbulence Model. Applied Mechanics and Materials, 0, 819, 356-360.	0.2	0
114	Performance of Petrol Engine Using Gasoline-Ethanol-Methanol (GEM) Ternary Mixture as Alternative Fuel. Applied Mechanics and Materials, 0, 833, 41-48.	0.2	0
115	Process optimization of microwave assisted co-pyrolysis of coal and oil palm shell blend with carbon surfaces. IOP Conference Series: Materials Science and Engineering, 2018, 414, 012016.	0.6	0
116	A numerical Study of the Effect of Façade Opening on Nighttime Ventilation of a Low-Energy Building. , 2022, , .		0