Weiming Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/125919/publications.pdf Version: 2024-02-01

		31976	34986
135	10,417	53	98
papers	citations	h-index	g-index
135	135	135	9749
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Heavy metal removal from water/wastewater by nanosized metal oxides: A review. Journal of Hazardous Materials, 2012, 211-212, 317-331.	12.4	1,767
2	Polymer-supported nanocomposites for environmental application: A review. Chemical Engineering Journal, 2011, 170, 381-394.	12.7	534
3	Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chemical Engineering Journal, 2009, 151, 19-29.	12.7	463
4	Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents. Water Research, 2009, 43, 4421-4429.	11.3	275
5	Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: Behavior and XPS study. Water Research, 2010, 44, 815-824.	11.3	233
6	Advances in Sulfidation of Zerovalent Iron for Water Decontamination. Environmental Science & Technology, 2017, 51, 13533-13544.	10.0	231
7	Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: Role of surface functional groups. Water Research, 2011, 45, 2191-2198.	11.3	213
8	Selective Removal of Cu(II) Ions by Using Cation-exchange Resin-Supported Polyethyleneimine (PEI) Nanoclusters. Environmental Science & Technology, 2010, 44, 3508-3513.	10.0	207
9	Enhanced Reactivity and Electron Selectivity of Sulfidated Zerovalent Iron toward Chromate under Aerobic Conditions. Environmental Science & amp; Technology, 2018, 52, 2988-2997.	10.0	207
10	Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability. Journal of Hazardous Materials, 2015, 284, 35-42.	12.4	166
11	Use of hydrous manganese dioxide as a potential sorbent for selective removal of lead, cadmium, and zinc ions from water. Journal of Colloid and Interface Science, 2010, 349, 607-612.	9.4	162
12	Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon. Journal of Hazardous Materials, 2012, 225-226, 99-106.	12.4	151
13	Selective heavy metals removal from waters by amorphous zirconium phosphate: Behavior and mechanism. Water Research, 2007, 41, 3103-3111.	11.3	142
14	Coupled Cu(II)-EDTA degradation and Cu(II) removal from acidic wastewater by ozonation: Performance, products and pathways. Chemical Engineering Journal, 2016, 299, 23-29.	12.7	140
15	Facile Fabrication of Magnetic Chitosan Beads of Fast Kinetics and High Capacity for Copper Removal. ACS Applied Materials & Interfaces, 2014, 6, 3421-3426.	8.0	138
16	Roles of oxygen-containing functional groups of O-doped g-C3N4 in catalytic ozonation: Quantitative relationship and first-principles investigation. Applied Catalysis B: Environmental, 2021, 292, 120155.	20.2	137
17	Efficient removal of nickel(II) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane. Water Research, 2018, 143, 87-98.	11.3	131
18	MIL-PVDF blend ultrafiltration membranes with ultrahigh MOF loading for simultaneous adsorption and catalytic oxidation of methylene blue. Journal of Hazardous Materials, 2019, 365, 312-321.	12.4	131

#	Article	IF	CITATIONS
19	A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation. Water Research, 2015, 87, 378-384.	11.3	128
20	Improved Adsorption of 4-Nitrophenol onto a Novel Hyper-Cross-Linked Polymer. Environmental Science & Technology, 2007, 41, 5057-5062.	10.0	126
21	Highly effective removal of heavy metals by polymer-based zirconium phosphate: A case study of lead ion. Journal of Colloid and Interface Science, 2007, 310, 99-105.	9.4	117
22	Sorption Enhancement of Aromatic Sulfonates onto an Aminated Hyper-Cross-Linked Polymer. Environmental Science & Technology, 2005, 39, 3308-3313.	10.0	115
23	Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. Science of the Total Environment, 2009, 407, 5471-5477.	8.0	111
24	Selective Sorption of Lead, Cadmium and Zinc lons by a Polymeric Cation Exchanger Containing Nano-Zr(HPO ₃ S) ₂ . Environmental Science & Technology, 2008, 42, 4140-4145.	10.0	107
25	Chromium speciation in tannery effluent after alkaline precipitation: Isolation and characterization. Journal of Hazardous Materials, 2016, 316, 169-177.	12.4	107
26	Enhancing the Fenton-like Catalytic Activity of nFe ₂ O ₃ by MIL-53(Cu) Support: A Mechanistic Investigation. Environmental Science & Technology, 2020, 54, 5258-5267.	10.0	103
27	Bifunctional resin-ZVI composites for effective removal of arsenite through simultaneous adsorption and oxidation. Water Research, 2013, 47, 6064-6074.	11.3	102
28	Coupled Effect of Ferrous Ion and Oxygen on the Electron Selectivity of Zerovalent Iron for Selenate Sequestration. Environmental Science & Technology, 2017, 51, 5090-5097.	10.0	88
29	Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger. Water Research, 2016, 102, 109-116.	11.3	87
30	Acid and organic resistant nano-hydrated zirconium oxide (HZO)/polystyrene hybrid adsorbent for arsenic removal from water. Chemical Engineering Journal, 2014, 248, 290-296.	12.7	85
31	Arsenate Adsorption by Hydrous Ferric Oxide Nanoparticles Embedded in Cross-linked Anion Exchanger: Effect of the Host Pore Structure. ACS Applied Materials & Interfaces, 2016, 8, 3012-3020.	8.0	85
32	Enhanced removal of EDTA-chelated Cu(II) by polymeric anion-exchanger supported nanoscale zero-valent iron. Journal of Hazardous Materials, 2017, 321, 290-298.	12.4	85
33	Efficient As(III) removal by macroporous anion exchanger-supported Fe–Mn binary oxide: Behavior and mechanism. Chemical Engineering Journal, 2012, 193-194, 131-138.	12.7	81
34	Highly efficient and selective Hg(II) removal from water by thiol-functionalized MOF-808: Kinetic and mechanism study. Chemical Engineering Journal, 2022, 430, 132960.	12.7	79
35	Enhanced adsorption of p-nitroaniline from water by a carboxylated polymeric adsorbent. Separation and Purification Technology, 2007, 57, 250-256.	7.9	74
36	Hydrous ferric oxide–resin nanocomposites of tunable structure for arsenite removal: Effect of the host pore structure. Journal of Hazardous Materials, 2011, 198, 241-246.	12.4	74

#	Article	IF	CITATIONS
37	Effective removal of effluent organic matter (EfOM) from bio-treated coking wastewater by a recyclable aminated hyper-cross-linked polymer. Water Research, 2013, 47, 4730-4738.	11.3	73
38	Application of an effective method in predicting breakthrough curves of fixed-bed adsorption onto resin adsorbent. Journal of Hazardous Materials, 2005, 124, 74-80.	12.4	72
39	Adsorptive removal of phenol from aqueous phase by using a porous acrylic ester polymer. Journal of Hazardous Materials, 2008, 157, 293-299.	12.4	71
40	Arsenate Removal from Aqueous Media by Nanosized Hydrated Ferric Oxide (HFO)-Loaded Polymeric Sorbents: Effect of HFO Loadings. Industrial & Engineering Chemistry Research, 2008, 47, 3957-3962.	3.7	66
41	Adsorption of Pb2+, Zn2+, and Cd2+ from waters by amorphous titanium phosphate. Journal of Colloid and Interface Science, 2008, 318, 160-166.	9.4	65
42	The nature and catalytic reactivity of UiO-66 supported Fe3O4 nanoparticles provide new insights into Fe-Zr dual active centers in Fenton-like reactions. Applied Catalysis B: Environmental, 2021, 286, 119943.	20.2	65
43	Preparation of polymer-supported hydrated ferric oxide based on Donnan membrane effect and its application for arsenic removal. Science in China Series B: Chemistry, 2008, 51, 379-385.	0.8	61
44	Wrinkle structure on multifunctional MOFs to facilitate PPCPs adsorption in wastewater. Chemical Engineering Journal, 2020, 387, 124196.	12.7	61
45	Visible Light Photocatalytic Degradation of RhB by Polymer-CdS Nanocomposites: Role of the Host Functional Groups. ACS Applied Materials & Interfaces, 2012, 4, 3938-3943.	8.0	58
46	Effect of alkaline precipitation on Cr species of Cr(III)-bearing complexes typically used in the tannery industry. Chemosphere, 2018, 193, 42-49.	8.2	58
47	A comparative study on Pb2+, Zn2+ and Cd2+ sorption onto zirconium phosphate supported by a cation exchanger. Journal of Hazardous Materials, 2008, 152, 469-475.	12.4	57
48	Assessment on the removal of dimethyl phthalate from aqueous phase using a hydrophilic hyper-cross-linked polymer resin NDA-702. Journal of Colloid and Interface Science, 2007, 311, 382-390.	9.4	56
49	Equilibrium and heat of adsorption of diethyl phthalate on heterogeneous adsorbents. Journal of Colloid and Interface Science, 2008, 325, 41-47.	9.4	56
50	Effect of sulfate on Cu(II) sorption to polymer-supported nano-iron oxides: Behavior and XPS study. Journal of Colloid and Interface Science, 2012, 366, 37-43.	9.4	56
51	Simultaneous removal of As(V) and Cr(VI) from water by macroporous anion exchanger supported nanoscale hydrous ferric oxide composite. Chemosphere, 2017, 171, 126-133.	8.2	56
52	Preparation and preliminary assessment of polymer-supported zirconium phosphate for selective lead removal from contaminated water. Water Research, 2006, 40, 2938-2946.	11.3	55
53	Immobilization of polyethylenimine nanoclusters onto a cation exchange resin through self-crosslinking for selective Cu(II) removal. Journal of Hazardous Materials, 2011, 190, 1037-1044.	12.4	55
54	Efficient Removal of Aromatic Sulfonates from Wastewater by a Recyclable Polymer: 2-Naphthalene Sulfonate as a Representative Pollutant. Environmental Science & Technology, 2008, 42, 7411-7416.	10.0	54

#	Article	IF	CITATIONS
55	New insights into nanocomposite adsorbents for water treatment: A case study of polystyrene-supported zirconium phosphate nanoparticles for lead removal. Journal of Nanoparticle Research, 2011, 13, 5355-5364.	1.9	54
56	Simultaneous organic/inorganic removal from water using a new nanocomposite adsorbent: A case study of p-nitrophenol and phosphate. Chemical Engineering Journal, 2015, 268, 399-407.	12.7	54
57	Adsorption of phenolic compounds from aqueous solution onto a macroporous polymer and its aminated derivative: isotherm analysis. Journal of Hazardous Materials, 2005, 121, 233-241.	12.4	52
58	Enhanced debromination of 4-bromophenol by the UV/sulfite process: Efficiency and mechanism. Journal of Environmental Sciences, 2017, 54, 231-238.	6.1	51
59	Mesoporous Ce-Ti-Zr ternary oxide millispheres for efficient catalytic ozonation in bubble column. Chemical Engineering Journal, 2018, 338, 261-270.	12.7	51
60	Activation of zero-valent iron through ball-milling synthesis of hybrid Fe0/Fe3O4/FeCl2 microcomposite for enhanced nitrobenzene reduction. Journal of Hazardous Materials, 2019, 368, 698-704.	12.4	50
61	A mini review of multifunctional ultrafiltration membranes for wastewater decontamination: Additional functions of adsorption and catalytic oxidation. Science of the Total Environment, 2021, 762, 143083.	8.0	50
62	Selective Adsorption of Cd(II) and Zn(II) Ions by Nano-Hydrous Manganese Dioxide (HMO)-Encapsulated Cation Exchanger. Industrial & Engineering Chemistry Research, 2010, 49, 7574-7579.	3.7	48
63	Fabrication of a reusable polymer-based cerium hydroxide nanocomposite with high stability for preferable phosphate removal. Chemical Engineering Journal, 2021, 405, 126649.	12.7	46
64	Temperature regulated adsorption and desorption of heavy metals to A-MIL-121: Mechanisms and the role of exchangeable protons. Water Research, 2021, 189, 116599.	11.3	46
65	Catalytic dechlorination of monochlorobenzene by Pd/Fe nanoparticles immobilized within a polymeric anion exchanger. Chemical Engineering Journal, 2011, 178, 161-167.	12.7	44
66	Temporospatial evolution and removal mechanisms of As(V) and Se(VI) in ZVI column with H2O2 as corrosion accelerator. Water Research, 2016, 106, 461-469.	11.3	44
67	Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H2O2/HCI: Effect of solution chemistry and mechanism investigation. Water Research, 2018, 133, 173-181.	11.3	44
68	Effects of organic acids of different molecular size on phosphate removal by HZO-201 nanocomposite. Chemosphere, 2017, 166, 422-430.	8.2	43
69	Impregnating titanium phosphate nanoparticles onto a porous cation exchanger for enhanced lead removal from waters. Journal of Colloid and Interface Science, 2009, 331, 453-457.	9.4	42
70	Enhanced chromium(VI) removal by zero-valent iron in the presence of anions and a weak magnetic field: Batch and column tests. Chemical Engineering Journal, 2018, 354, 445-453.	12.7	42
71	Fabrication of a Novel Bifunctional Nanocomposite with Improved Selectivity for Simultaneous Nitrate and Phosphate Removal from Water. ACS Applied Materials & Interfaces, 2019, 11, 35277-35285.	8.0	41
72	Modeling synergistic adsorption of phenol/aniline mixtures in the aqueous phase onto porous polymer adsorbents. Journal of Colloid and Interface Science, 2007, 306, 216-221.	9.4	40

#	Article	IF	CITATIONS
73	A thermally stable mesoporous ZrO2–CeO2–TiO2 visible light photocatalyst. Chemical Engineering Journal, 2013, 229, 118-125.	12.7	40
74	Exploring mechanisms of different active species formation in heterogeneous Fenton systems by regulating iron chemical environment. Applied Catalysis B: Environmental, 2021, 295, 120282.	20.2	40
75	Removal enhancement of 1-naphthol and 1-naphthylamine in single and binary aqueous phase by acid–basic interactions with polymer adsorbents. Journal of Hazardous Materials, 2008, 158, 293-299.	12.4	36
76	Adsorptive selenite removal from water using a nano-hydrated ferric oxides (HFOs)/polymer hybrid adsorbent. Journal of Environmental Monitoring, 2010, 12, 305-310.	2.1	36
77	A fabrication strategy for nanosized zero valent iron (nZVI)–polymeric anion exchanger composites with tunable structure for nitrate reduction. Journal of Hazardous Materials, 2012, 233-234, 1-6.	12.4	36
78	Soft Particles Enable Fast and Selective Water Transport through Graphene Oxide Membranes. Nano Letters, 2020, 20, 7327-7332.	9.1	36
79	Sorption enhancement of nickel(II) from wastewater by ZIF-8 modified with poly (sodium) Tj ETQq1 1 0.784314	rgBT /Ovei 12.7	'logg 10 Tf 50
80	Mechanistic insight into selective adsorption and easy regeneration of carboxyl-functionalized MOFs towards heavy metals. Journal of Hazardous Materials, 2022, 424, 127684.	12.4	35
81	Preparation of an aminated macroreticular resin adsorbent and its adsorption of p-nitrophenol from water. Journal of Hazardous Materials, 2006, 137, 1236-1240.	12.4	34
82	Adsorption enhancement of laterally interacting phenol/aniline mixtures onto nonpolar adsorbents. Chemosphere, 2007, 66, 2044-2049.	8.2	34
83	Adsorption equilibrium and heat of phenol onto aminated polymeric resins from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 34-38.	4.7	33
84	A comparative study on lead sorption by amorphous and crystalline zirconium phosphates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 322, 108-112.	4.7	32
85	Selective removal of Pb(II), Cd(II), and Zn(II) ions from waters by an inorganic exchanger Zr(HPO3S)2. Journal of Hazardous Materials, 2009, 170, 824-828.	12.4	32
86	Integrating cationic metal-organic frameworks with ultrafiltration membrane for selective removal of perchlorate from Water. Journal of Hazardous Materials, 2020, 381, 120961.	12.4	32
87	Oxalate-promoted dissolution of hydrous ferric oxide immobilized within nanoporous polymers: Effect of ionic strength and visible light irradiation. Chemical Engineering Journal, 2013, 232, 167-173.	12.7	31
88	Recyclable polymer-based nano-hydrous manganese dioxide for highly efficient Tl(I) removal from water. Science China Chemistry, 2014, 57, 763-771.	8.2	31
89	A New Approach to Catalytic Degradation of Dimethyl Phthlate by a Macroporous OH-Type Strongly Basic Anion Exchange Resin. Environmental Science & Technology, 2010, 44, 3130-3135.	10.0	30
90	Molecular identification guided process design for advanced treatment of electroless nickel plating effluent. Water Research, 2020, 168, 115211.	11.3	28

#	Article	IF	CITATIONS
91	Application of the Polanyi potential theory to phthalates adsorption from aqueous solution with hyper-cross-linked polymer resins. Journal of Colloid and Interface Science, 2008, 319, 392-397.	9.4	27
92	Sorption enhancement of 1-naphthol onto a hydrophilic hyper-cross-linked polymer resin. Journal of Hazardous Materials, 2009, 163, 53-57.	12.4	27
93	Sodium hypochlorite assisted membrane cleaning: Alterations in the characteristics of organic foulants and membrane permeability. Chemosphere, 2018, 211, 139-148.	8.2	27
94	Dual-functional millisphere of anion-exchanger-supported nanoceria for synergistic As(III) removal with stoichiometric H2O2: Catalytic oxidation and sorption. Chemical Engineering Journal, 2019, 360, 982-989.	12.7	27
95	Exploring the mechanism of ZrO2 structure features on H2O2 activation in Zr–Fe bimetallic catalyst. Applied Catalysis B: Environmental, 2021, 299, 120685.	20.2	27
96	Utilization of gel-type polystyrene host for immobilization of nano-sized hydrated zirconium oxides: A new strategy for enhanced phosphate removal. Chemosphere, 2021, 263, 127938.	8.2	26
97	High-Efficiency and Sustainable Desalination Using Thermo-regenerable MOF-808-EDTA: Temperature-Regulated Proton Transfer. ACS Applied Materials & Interfaces, 2021, 13, 23833-23842.	8.0	26
98	Adsorption and desorption hysteresis of 4-nitrophenol on a hyper-cross-linked polymer resin NDA-701. Journal of Hazardous Materials, 2009, 168, 1217-1222.	12.4	24
99	Impregnating Zirconium Phosphate onto Porous Polymers for Lead Removal from Waters: Effect of Nanosized Particles and Polymer Chemistry. Industrial & Engineering Chemistry Research, 2009, 48, 4495-4499.	3.7	23
100	Efficient Removal of Trace Se(VI) by Millimeter-Sized Nanocomposite of Zerovalent Iron Confined in Polymeric Anion Exchanger. Industrial & Engineering Chemistry Research, 2017, 56, 5309-5317.	3.7	23
101	Removal of aromatic sulfonates from aqueous media by aminated polymeric sorbents: Concentration-dependent selectivity and the application. Microporous and Mesoporous Materials, 2008, 116, 63-69.	4.4	22
102	Cooperative adsorption behaviours of 1-naphthol and 1-naphthylamine onto nonpolar macroreticular adsorbents. Reactive and Functional Polymers, 2006, 66, 485-493.	4.1	21
103	A novel combined process for efficient removal of Se(VI) from sulfate-rich water: Sulfite/UV/Fe(III) coagulation. Chemosphere, 2018, 211, 867-874.	8.2	21
104	A comparative study of the adsorption properties of 1-naphthylamine by XAD-4 and NDA-150 polymer resins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 331, 257-262.	4.7	19
105	Modeling cooperative adsorption of aromatic compounds in aqueous solutions to nonpolar adsorbent. Separation and Purification Technology, 2006, 49, 130-135.	7.9	18
106	Enhancing the performance of Fenton-like oxidation by a dual-layer membrane: A sequential interception-oxidation process. Journal of Hazardous Materials, 2021, 402, 123766.	12.4	18
107	Electron-rich oxygen enhanced Fe-doped g-C3N4 mediated Fenton-like process: Accelerate Fe(III) reduction and strengthen catalyst stability. Journal of Cleaner Production, 2021, 319, 128680.	9.3	18
108	Aging of zerovalent iron in various coexisting solutes: Characteristics, reactivity toward selenite and rejuvenation by weak magnetic field. Separation and Purification Technology, 2018, 191, 94-100.	7.9	17

#	Article	IF	CITATIONS
109	New insights into the fractionation of effluent organic matter on diagnosis of key composition affecting advanced phosphate removal by Zr-based nanocomposite. Water Research, 2020, 186, 116299.	11.3	17
110	Preferential Nitrate Removal from Water Using a New Recyclable Polystyrene Adsorbent Functionalized with Triethylamine Groups. Industrial & Engineering Chemistry Research, 2020, 59, 5194-5201.	3.7	16
111	Trade-off between Fenton-like activity and structural stability of MILs(Fe). Chemical Engineering Journal, 2021, 420, 129583.	12.7	16
112	Synergistic effect on phenol/aniline mixture adsorption on nonpolar resin adsorbents from aqueous solution. Reactive and Functional Polymers, 2006, 66, 395-401.	4.1	14
113	Effect of CdS distribution on the photocatalytic performance of resin-CdS nanocomposites. Chemical Engineering Journal, 2011, 174, 351-356.	12.7	14
114	Fabrication of anion exchanger resin/nano-CdS composite photocatalyst for visible light RhB degradation. Nanotechnology, 2011, 22, 305707.	2.6	14
115	An in-situ strategy to analyze multi-effect catalysis in iron-copper bimetals catalyzed Fenton-like processes. Applied Catalysis B: Environmental, 2021, 299, 120697.	20.2	14
116	Application of heterogeneous adsorbents in removal of dimethyl phthalate: Equilibrium and heat. AICHE Journal, 2010, 56, 2699-2705.	3.6	13
117	Kinetic study of the removal of dimethyl phthalate from an aqueous solution using an anion exchange resin. Environmental Science and Pollution Research, 2014, 21, 6571-6577.	5.3	13
118	Iron-mediated oxidation of arsenic(III) by oxygen and hydrogen peroxide: Dispersed versus resin-supported zero-valent iron. Journal of Colloid and Interface Science, 2014, 428, 179-184.	9.4	13
119	Iron-based metal-organic framework derived pyrolytic materials for effective Fenton-like catalysis: Performance, mechanisms and practicability. Science of the Total Environment, 2022, 809, 152201.	8.0	13
120	Treatment of aqueous diethyl phthalate by adsorption using a functional polymer resin. Environmental Technology (United Kingdom), 2011, 32, 145-153.	2.2	12
121	A novel water-stable two-dimensional zeolitic imidazolate frameworks thin-film composite membrane for enhancements in water permeability and nanofiltration performance. Chemosphere, 2020, 261, 127717.	8.2	12
122	Highly efficient and environmentally benign As(III) pre-oxidation in water by using a solid redox polymer. Chemosphere, 2017, 175, 300-306.	8.2	11
123	Cooperative effect of lateral acid–base interaction on 1-naphthol/1-naphthylamine binary adsorption onto nonpolar polymer adsorbents. Separation and Purification Technology, 2007, 55, 141-146.	7.9	10
124	Effect of spatial distribution and aging of ZVI on the reactivity of resin–ZVI composites for arsenite removal. Journal of Materials Science, 2014, 49, 7073-7079.	3.7	10
125	Enhanced removal of p-chloroaniline from aqueous solution by a carboxylated polymeric sorbent. Journal of Hazardous Materials, 2007, 143, 462-468.	12.4	9
126	Nickel speciation of spent electroless nickel plating effluent along the typical sequential treatment scheme. Science of the Total Environment, 2019, 654, 35-42.	8.0	9

#	Article	IF	CITATIONS
127	Preparation and performance evaluation of resin-derived carbon spheres for desulfurization of fuels. Science China Chemistry, 2013, 56, 393-398.	8.2	8
128	Bioregeneration of hyper-cross-linked polymeric resin preloaded with phenol. Bioresource Technology, 2013, 142, 701-705.	9.6	8
129	Development of cation exchanger-based nano-CdS hybrid catalyst for visible-light photodegradation of rhodamine B from water. Science China Chemistry, 2012, 55, 409-415.	8.2	7
130	The Enhancement of Nitrate Reduction by Supported Pd–Fe Nanoscale Particle. Science of Advanced Materials, 2015, 7, 1734-1740.	0.7	6
131	Efficient Metal Cutting Fluid Wastewater Separation of Polyacrylonitrile Ultrafiltration Membranes Enabled by Metal Ion Cross-Linking. ACS ES&T Water, 2022, 2, 1143-1151.	4.6	6
132	Competitive and Cooperative Adsorption of Aromatic Acids and Bases onto a New Aminated Macroreticular Adsorbent. Adsorption Science and Technology, 2005, 23, 751-762.	3.2	5
133	Different combined systems with Fenton-like oxidation and ultrafiltration for industrial wastewater treatment. Journal of Membrane Science, 2021, 638, 119688.	8.2	2
134	COMPETITIVE AND COOPERATIVE EFFECT ON SIMULTANEOUS ADSORPTION OF PHENOL AND ANILINE FROM AQUEOUS SOLUTIONS BY HYPERCROSSLINKED POLYMERIC ADSORBENTS. Acta Polymerica Sinica, 2006, 006, 213-218.	0.0	2
135	Recent Patents on Polymeric Adsorbents and their Derivatives for Pollutants Removal from Aqueous Media: A Mini-Review. Recent Patents on Engineering, 2008, 2, 122-131.	0.4	1