Per E Ertbjerg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1258709/publications.pdf

Version: 2024-02-01

85 4,366 40 64 g-index

86 86 86 86 3202

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Cooking loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food Quality and Preference, 2003, 14, 277-288.	4.6	354
2	Muscle structure, sarcomere length and influences on meat quality: A review. Meat Science, 2017, 132, 139-152.	5 . 5	198
3	Live weight, body size and carcass characteristics of young bulls of fifteen European breeds. Livestock Science, 2008, 114, 19-30.	1.6	183
4	Characterization of ligand binding to acyl-CoA-binding protein. Biochemical Journal, 1993, 290, 321-326.	3.7	175
5	Low-temperature long-time cooking of meat: Eating quality and underlying mechanisms. Meat Science, 2018, 143, 104-113.	5.5	153
6	Relationship between collagen characteristics, lipid content and raw and cooked texture of meat from young bulls of fifteen European breeds. Meat Science, 2011, 87, 61-65.	5 . 5	150
7	Dietary-induced changes of muscle growth rate in pigs: Effects on in vivo and postmortem muscle proteolysis and meat quality1. Journal of Animal Science, 2002, 80, 2862-2871.	0.5	129
8	Myofibrillar protein oxidation affects filament charges, aggregation and water-holding. Meat Science, 2018, 135, 102-108.	5.5	120
9	Effects of protein oxidation on the texture and water-holding of meat: a review. Critical Reviews in Food Science and Nutrition, 2019, 59, 3564-3578.	10.3	110
10	Effect of prolonged heat treatment from 48°C to 63°C on toughness, cooking loss and color of pork. Meat Science, 2011, 88, 280-285.	5 . 5	109
11	Long-term changes in performance and meat quality of Danish Landrace pigs: a study on a current compared with an unimproved genotype. Animal Science, 2000, 71, 81-92.	1.3	100
12	Relationship between meat toughness and properties of connective tissue from cows and young bulls heat treated at low temperatures for prolonged times. Meat Science, 2013, 93, 787-795.	5 . 5	95
13	Novel DNPH-based method for determination of protein carbonylation in muscle and meat. Food Chemistry, 2016, 197, 670-675.	8.2	93
14	Tenderization of beef by lactic acid injected at different times post mortem. Meat Science, 2001, 57, 347-357.	5.5	90
15	Modified atmosphere packaging affects lipid oxidation, myofibrillar fragmentation index and eating quality of beef. Packaging Technology and Science, 2009, 22, 85-96.	2.8	90
16	On the origin of thaw loss: Relationship between freezing rate and protein denaturation. Food Chemistry, 2019, 299, 125104.	8.2	87
17	Changes in the muscle proteome after compensatory growth in pigs. Journal of Animal Science, 2006, 84, 918-924.	0.5	83
18	Compensatory growth response in pigs, muscle protein turn-over and meat texture: effects of restriction/realimentation period. Animal Science, 2002, 75, 367-377.	1.3	81

#	Article	IF	CITATIONS
19	MEATabolomics: Muscle and Meat Metabolomics in Domestic Animals. Metabolites, 2020, 10, 188.	2.9	81
20	Superficial and deep changes of histology, texture and particle size distribution in broiler wooden breast muscle during refrigerated storage. Poultry Science, 2017, 96, 3465-3472.	3.4	80
21	The effect of temperature on the activity of $\hat{l}^{1}\!\!/\!\!4$ - and m-calpain and calpastatin during post-mortem storage of porcine longissimus muscle. Meat Science, 2012, 91, 50-55.	5 . 5	70
22	On the water-holding of myofibrils: Effect of sarcoplasmic protein denaturation. Meat Science, 2016, 119, 32-40.	5 . 5	70
23	Relationship between oxygen concentration, shear force and protein oxidation in modified atmosphere packaged pork. Meat Science, 2015, 110, 174-179.	5 . 5	67
24	Ageing of large cuts of beef loin in vacuum or high oxygen modified atmosphere – Effect on shear force, calpain activity, desmin degradation and protein oxidation. Meat Science, 2010, 85, 160-166.	5 . 5	62
25	Compensatory growth in slaughter pigs—in vitro muscle protein turnover at slaughter, circulating IGF-I, performance and carcass quality. Livestock Science, 2004, 88, 63-75.	1.2	60
26	Investigation on CAST, CAPN1 and CAPN3 porcine gene polymorphisms and expression in relation to post-mortem calpain activity in muscle and meat quality. Meat Science, 2011, 88, 694-700.	5.5	56
27	Freezing of meat and aquatic food: Underlying mechanisms and implications on protein oxidation. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5548-5569.	11.7	55
28	Combined effect of epinephrine and exercise on calpain/calpastatin and cathepsin B and L activity in porcine longissimus muscle Journal of Animal Science, 1999, 77, 2428.	0.5	54
29	Electrical stimulation affects metabolic enzyme phosphorylation, protease activation, and meat tenderization in beef1. Journal of Animal Science, 2012, 90, 1638-1649.	0.5	53
30	Effects of frozen-then-chilled storage on proteolytic enzyme activity and water-holding capacity of pork loin. Meat Science, 2018, 145, 375-382.	5 . 5	53
31	In vitro study to evaluate the degradation of bovine muscle proteins post-mortem by proteasome and \hat{l}_4 -calpain. Meat Science, 2008, 79, 77-85.	5. 5	51
32	Injection of marinade with actinidin increases tenderness of porcine <i>M. biceps femoris</i> and affects myofibrils and connective tissue. Journal of the Science of Food and Agriculture, 2009, 89, 1607-1614.	3.5	51
33	Compensatory growth improves meat tenderness in gilts but not in barrows1. Journal of Animal Science, 2004, 82, 3617-3624.	0.5	50
34	Mimicking myofibrillar protein denaturation in frozen-thawed meat: Effect of pH at high ionic strength. Food Chemistry, 2021, 338, 128017.	8.2	50
35	Protein degradation of black carp (Mylopharyngodon piceus) muscle during cold storage. Food Chemistry, 2020, 308, 125576.	8.2	49
36	Novel method for determination of myofibril fragmentation post-mortem. Meat Science, 2007, 75, 719-724.	5 . 5	46

#	Article	IF	CITATIONS
37	Evidence for post-mortem m-calpain autolysis in porcine muscle. Meat Science, 2008, 80, 761-764.	5.5	46
38	Relationship between proteolytic changes and tenderness in prerigor lactic acid marinated beef. Journal of the Science of Food and Agriculture, 1999, 79, 970-978.	3.5	42
39	Effect of pre-rigor temperature incubation on sarcoplasmic protein solubility, calpain activity and meat properties in porcine muscle. LWT - Food Science and Technology, 2014, 55, 483-489.	5.2	42
40	Influence of early pH decline on calpain activity in porcine muscle. Meat Science, 2010, 85, 110-114.	5. 5	41
41	Desmin and troponin T are degraded faster in type IIb muscle fibers than in type I fibers during postmortem aging of porcine muscle. Meat Science, 2010, 86, 764-769.	5.5	40
42	Relationship between proteolysis and water-holding of myofibrils. Meat Science, 2017, 131, 48-55.	5. 5	40
43	Calcium content and respiratory control index of skeletal muscle mitochondria during exercise and recovery. American Journal of Physiology - Endocrinology and Metabolism, 1996, 271, E1044-E1050.	3.5	37
44	High pressure treatment of brine enhanced pork affects endopeptidase activity, protein solubility, and peptide formation. Food Chemistry, 2012, 134, 1556-1563.	8.2	34
45	Association of genes involved in carcass and meat quality traits in 15 European bovine breeds. Livestock Science, 2013, 154, 34-44.	1.6	32
46	Role of freezing-induced myofibrillar protein denaturation in the generation of thaw loss: A review. Meat Science, 2022, 190, 108841.	5. 5	32
47	Temperature induced denaturation of myosin: Evidence of structural alterations of myosin subfragment-1. Meat Science, 2014, 98, 124-128.	5.5	31
48	Electrical stimulation of pigs—effect on pH fall, meat quality and Cathepsin B+L activity. Meat Science, 1999, 52, 179-187.	5.5	30
49	Genes involved in muscle lipid composition in 15 European <i>Bos taurus</i> breeds. Animal Genetics, 2013, 44, 493-501.	1.7	30
50	Effect of oxygen concentration in modified atmosphere packaging on color and texture of beef patties cooked to different temperatures. Meat Science, 2016, 121, 189-195.	5.5	30
51	Effect of prerigor lactic acid treatment on lysosomal enzyme release in bovine muscle. Journal of the Science of Food and Agriculture, 1999, 79, 95-100.	3.5	29
52	Activities of calpastatin, $\hat{1}\frac{1}{4}$ -calpain and m-calpain are stable during frozen storage of meat. Meat Science, 2006, 72, 116-120.	5.5	28
53	Myofibrillar protein gel properties are influenced by oxygen concentration in modified atmosphere packaged minced beef. Food Chemistry, 2017, 230, 475-481.	8.2	26
54	Evolution of proteolytic indicators during storage of broiler wooden breast meat. Poultry Science, 2018, 97, 1448-1455.	3.4	26

#	Article	IF	Citations
55	Unsaturated fat fraction from lard increases the oxidative stability of minced pork. Meat Science, 2018, 143, 87-92.	5.5	25
56	Effect of Various Phyto-extracts on Physico-chemical, Colour, and Oxidative Stability of Pork Frankfurters. Asian-Australasian Journal of Animal Sciences, 2015, 28, 1178-1186.	2.4	24
57	Metabolite profile based on 1H NMR of broiler chicken breasts affected by wooden breast myodegeneration. Food Chemistry, 2020, 310, 125852.	8.2	22
58	Calcium Content and Respiratory Control Index of Isolated Skeletal Muscle Mitochondria: Effects of Different Isolation Media. Analytical Biochemistry, 1996, 237, 37-41.	2.4	19
59	Mechanical properties of type I and type IIB single porcine muscle fibres. Meat Science, 2006, 73, 422-425.	5.5	18
60	Genetic disruption of calpain correlates with loss of membrane blebbing and differential expression of RhoGDI-1, cofilin and tropomyosin. Biochemical Journal, 2008, 411, 657-666.	3.7	16
61	Polymorphisms in twelve candidate genes are associated with growth, muscle lipid profile and meat quality traits in eleven European cattle breeds. Molecular Biology Reports, 2014, 41, 4721-4731.	2.3	16
62	Compensatory growth response as a strategy to enhance tenderness in entire male and female pork M. longissimus thoracis. Meat Science, 2009, 81, 163-170.	5.5	13
63	Ca2+-induced binding of calpain-2 to myofibrils: Preliminary results in pork longissimus thoracis muscle supporting a role on myofibrillar protein degradation. Meat Science, 2021, 172, 108364.	5.5	13
64	Effect of proteolytic enzyme activity and heating on the mechanical properties of bovine single muscle fibres. Meat Science, 2004, 66, 361-369.	5.5	12
65	Effect of LTLT heat treatment on cathepsin B and L activities and denaturation of myofibrillar proteins of pork. Meat Science, 2021, 175, 108454.	5.5	12
66	Myofibrillar protein characteristics of fast or slow frozen pork during subsequent storage at â^3°C. Meat Science, 2021, 176, 108468.	5.5	12
67	An FPLC method for determination of calpains and calpastatin in porcine m longissimus dorsi. Biochimie, 1993, 75, 869-872.	2.6	10
68	Colour variability of beef in young bulls from fifteen European breeds. International Journal of Food Science and Technology, 2018, 53, 2777-2785.	2.7	9
69	Has breed any effect on beef sensory quality?. Livestock Science, 2021, 250, 104548.	1.6	9
70	Effect of wooden breast degree on lipid and protein oxidation and citrate synthase activity of chicken pectoralis major muscle. LWT - Food Science and Technology, 2022, 154, 112884.	5.2	9
71	A Capillary Electrophoresis Method to Study Postmortem Proteolysis in Relation to Pork Tenderness. Journal of Agricultural and Food Chemistry, 2003, 51, 5895-5899.	5.2	7
72	Sarcoplasmic and myofibril-bound calpains during storage of pork longissimus muscle: New insights on protein degradation. Food Chemistry, 2022, 372, 131347.	8.2	7

#	Article	IF	CITATIONS
73	Impact of fermentation of okara on physicochemical, techno-functional, and sensory properties of meat analogues. European Food Research and Technology, 2021, 247, 2379-2389.	3.3	6
74	Phenotypic and genotypic background underlying variations in fatty acid composition and sensory parameters in European bovine breeds. Journal of Animal Science and Biotechnology, 2014, 5, 20.	5.3	5
75	Oxidation of proteins., 2021,, 85-123.		5
76	Near-Infrared Reflectance Spectroscopy for Predicting the Phospholipid Fraction and the Total Fatty Acid Composition of Freeze-Dried Beef. Sensors, 2021, 21, 4230.	3.8	5
77	Effects of gaseous ozone treatment on the quality and microbial community of salmon (Salmo salar) during cold storage. Food Control, 2022, 142, 109217.	5.5	5
78	CHEMICAL ANALYSIS FOR SPECIFIC COMPONENTS \mid Micronutrients and Other Minor Meat Components. , 2004, , 190-195.		4
79	Epinephrine upregulates calpain activity in cultured C2C12 muscle cells. Biochimie, 2000, 82, 197-201.	2.6	3
80	Influence of Woody Breast Myopathy on Sarcomere Length and Tensile Strength in Commercial Broiler Pectoralis major Muscle. Meat and Muscle Biology, 2021, 5, .	1.9	2
81	Utilization of fermented and enzymatically hydrolyzed soy press cake as ingredient for meat analogues. LWT - Food Science and Technology, 2022, 165, 113736.	5.2	2
82	SNP included in candidate genes involved in muscle, lipid and energy metabolism behave like neutral markers. Animal Production Science, 2015, 55, 1164.	1.3	1
83	Influence of vitamins A, D3 and E status on post-mortem meat quality in steers under winter housing or pasture finishing systems. Animal, 2011, 5, 1141-1148.	3.3	0
84	FORCE PRODUCTION DURING HYPOXIA/REOXYGENATIO N IN SKELETAL MUSCLES IS HIGHLY AFFECTED BY A SODIUM/CALCIUM EXCHANGE BLOCKER Medicine and Science in Sports and Exercise, 2002, 34, S80.	0.4	0
85	European cattle breed cluster accordingly to their meat quality parameters. Italian Journal of Animal Science, 2007, 6, 490-490.	1.9	0