
Kathryn G Roberts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1257448/publications.pdf Version: 2024-02-01

KATHDVN C ROBERTS

#	Article	IF	CITATIONS
1	The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature, 2012, 481, 157-163.	27.8	1,430
2	Targetable Kinase-Activating Lesions in Ph-like Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2014, 371, 1005-1015.	27.0	1,161
3	Genetic Alterations Activating Kinase and Cytokine Receptor Signaling in High-Risk Acute Lymphoblastic Leukemia. Cancer Cell, 2012, 22, 153-166.	16.8	621
4	PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nature Genetics, 2019, 51, 296-307.	21.4	384
5	High Frequency and Poor Outcome of Philadelphia Chromosome–Like Acute Lymphoblastic Leukemia in Adults. Journal of Clinical Oncology, 2017, 35, 394-401.	1.6	326
6	Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood, 2017, 129, 572-581.	1.4	285
7	A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nature Genetics, 2013, 45, 1226-1231.	21.4	270
8	Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nature Genetics, 2013, 45, 1494-1498.	21.4	264
9	Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood, 2012, 120, 3510-3518.	1.4	263
10	Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood, 2016, 127, 3004-3014.	1.4	244
11	Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nature Reviews Clinical Oncology, 2015, 12, 344-357.	27.6	243
12	Targetable kinase gene fusions in high-risk B-ALL: a study from the Children's Oncology Group. Blood, 2017, 129, 3352-3361.	1.4	236
13	Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nature Genetics, 2016, 48, 1481-1489.	21.4	231
14	Outcomes of Children With <i>BCR-ABL1</i> –Like Acute Lymphoblastic Leukemia Treated With Risk-Directed Therapy Based on the Levels of Minimal Residual Disease. Journal of Clinical Oncology, 2014, 32, 3012-3020.	1.6	223
15	Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nature Communications, 2016, 7, 13331.	12.8	218
16	Tyrosine Kinase Inhibitor Therapy Induces Remission in a Patient With Refractory <i>EBF1-PDGFRB</i> –Positive Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2013, 31, e413-e416.	1.6	202
17	Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project. Blood, 2013, 121, 485-488.	1.4	156
18	Efficacy of Retinoids in IKZF1-Mutated BCR-ABL1 Acute Lymphoblastic Leukemia. Cancer Cell, 2015, 28, 343-356.	16.8	145

#	Article	IF	CITATIONS
19	Venetoclax and Navitoclax in Combination with Chemotherapy in Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Cancer Discovery, 2021, 11, 1440-1453.	9.4	137
20	Adults with Philadelphia chromosome–like acute lymphoblastic leukemia frequently have <i>IGH-CRLF2</i> and <i>JAK2</i> mutations, persistence of minimal residual disease and poor prognosis. Haematologica, 2017, 102, 130-138.	3.5	136
21	Truncating Erythropoietin Receptor Rearrangements in Acute Lymphoblastic Leukemia. Cancer Cell, 2016, 29, 186-200.	16.8	118
22	A genome-wide association study of susceptibility to acute lymphoblastic leukemia in adolescents and young adults. Blood, 2015, 125, 680-686.	1.4	110
23	Extensive Remodeling of the Immune Microenvironment in B Cell Acute Lymphoblastic Leukemia. Cancer Cell, 2020, 37, 867-882.e12.	16.8	108
24	Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the Children's Oncology Group. Blood, 2018, 132, 815-824.	1.4	97
25	Mutational Landscape and Patterns of Clonal Evolution in Relapsed Pediatric Acute Lymphoblastic Leukemia. Blood Cancer Discovery, 2020, 1, 96-111.	5.0	93
26	Genetics and prognosis of ALL in children vs adults. Hematology American Society of Hematology Education Program, 2018, 2018, 137-145.	2.5	90
27	Philadelphia Chromosome–like Acute Lymphoblastic Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2017, 17, 464-470.	0.4	84
28	Enhancer Hijacking Drives Oncogenic <i>BCL11B</i> Expression in Lineage-Ambiguous Stem Cell Leukemia. Cancer Discovery, 2021, 11, 2846-2867.	9.4	83
29	Outcome of children with hypodiploid ALL treated with risk-directed therapy based on MRD levels. Blood, 2015, 126, 2896-2899.	1.4	76
30	Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Blood Advances, 2017, 1, 1657-1671.	5.2	76
31	PAX5 is a tumor suppressor in mouse mutagenesis models of acute lymphoblastic leukemia. Blood, 2015, 125, 3609-3617.	1.4	72
32	Clinical Significance of Novel Subtypes of Acute Lymphoblastic Leukemia in the Context of Minimal Residual Disease–Directed Therapy. Blood Cancer Discovery, 2021, 2, 326-337.	5.0	71
33	Tumor-intrinsic and -extrinsic determinants of response to blinatumomab in adults with B-ALL. Blood, 2021, 137, 471-484.	1.4	70
34	Network-based systems pharmacology reveals heterogeneity in LCK and BCL2 signaling and therapeutic sensitivity of T-cell acute lymphoblastic leukemia. Nature Cancer, 2021, 2, 284-299.	13.2	70
35	CONSERTING: integrating copy-number analysis with structural-variation detection. Nature Methods, 2015, 12, 527-530.	19.0	68
36	Characterization of leukemias with ETV6-ABL1 fusion. Haematologica, 2016, 101, 1082-1093.	3.5	66

#	Article	IF	CITATIONS
37	Development and Validation Of a Highly Sensitive and Specific Gene Expression Classifier To Prospectively Screen and Identify B-Precursor Acute Lymphoblastic Leukemia (ALL) Patients With a Philadelphia Chromosome-Like ("Ph-like―or "BCR-ABL1-Likeâ€) Signature For Therapeutic Targeting and Clinical Intervention. Blood, 2013, 122, 826-826.	1.4	65
38	Molecular classification improves risk assessment in adult <i>BCR-ABL1–</i> negative B-ALL. Blood, 2021, 138, 948-958.	1.4	59
39	ETV6-NTRK3 induces aggressive acute lymphoblastic leukemia highly sensitive to selective TRK inhibition. Blood, 2018, 132, 861-865.	1.4	53
40	CRLF2-Positive B-Cell Acute Lymphoblastic Leukemia in Adult Patients. American Journal of Clinical Pathology, 2017, 147, 357-363.	0.7	51
41	Evaluation of the <i>In Vitro</i> and <i>In Vivo</i> Efficacy of the JAK Inhibitor AZD1480 against JAK-Mutated Acute Lymphoblastic Leukemia. Molecular Cancer Therapeutics, 2015, 14, 364-374.	4.1	49
42	Novel susceptibility variants at the ERG locus for childhood acute lymphoblastic leukemia in Hispanics. Blood, 2019, 133, 724-729.	1.4	44
43	Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute lymphoblastic leukemia. Nature Cancer, 2020, 1, 329-344.	13.2	44
44	Hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia: a single-arm, phase 2 trial. Lancet Haematology,the, 2020, 7, e523-e533.	4.6	43
45	Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven Philadelphia chromosome-like acute B-cell lymphoblastic leukemia. Oncotarget, 2018, 9, 8027-8041.	1.8	42
46	The Biology of B-Progenitor Acute Lymphoblastic Leukemia. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a034835.	6.2	40
47	The biology of Philadelphia chromosome-like ALL. Best Practice and Research in Clinical Haematology, 2017, 30, 212-221.	1.7	38
48	Association of Genetic Ancestry With the Molecular Subtypes and Prognosis of Childhood Acute Lymphoblastic Leukemia. JAMA Oncology, 2022, 8, 354.	7.1	35
49	Outcomes of paediatric patients with B-cell acute lymphocytic leukaemia with ABL-class fusion in the pre-tyrosine-kinase inhibitor era: a multicentre, retrospective, cohort study. Lancet Haematology,the, 2021, 8, e55-e66.	4.6	32
50	OBI-3424, a Novel AKR1C3-Activated Prodrug, Exhibits Potent Efficacy against Preclinical Models of T-ALL. Clinical Cancer Research, 2019, 25, 4493-4503.	7.0	30
51	Why and how to treat Ph-like ALL?. Best Practice and Research in Clinical Haematology, 2018, 31, 351-356.	1.7	29
52	Noncoding genetic variation in GATA3 increases acute lymphoblastic leukemia risk through local and global changes in chromatin conformation. Nature Genetics, 2022, 54, 170-179.	21.4	29
53	Conserved IKAROS-regulated genes associated with B-progenitor acute lymphoblastic leukemia outcome. Journal of Experimental Medicine, 2017, 214, 773-791.	8.5	27
54	Interleukin-7 receptor α mutational activation can initiate precursor B-cell acute lymphoblastic leukemia. Nature Communications, 2021, 12, 7268.	12.8	24

#	Article	IF	CITATIONS
55	How new advances in genetic analysis are influencing the understanding and treatment of childhood acute leukemia. Current Opinion in Pediatrics, 2011, 23, 34-40.	2.0	23
56	The age of the bone marrow microenvironment influences B-cell acute lymphoblastic leukemia progression via CXCR5-CXCL13. Blood, 2021, 138, 1870-1884.	1.4	20
57	Enhancer retargeting of <i>CDX2</i> and <i>UBTF::ATXN7L3</i> define a subtype of high-risk B-progenitor acute lymphoblastic leukemia. Blood, 2022, 139, 3519-3531.	1.4	20
58	Acute lymphoblastic leukemia displays a distinct highly methylated genome. Nature Cancer, 2022, 3, 768-782.	13.2	15
59	Characterization of Novel Subtypes in B Progenitor Acute Lymphoblastic Leukemia. Blood, 2018, 132, 565-565.	1.4	14
60	Co-occurrence of CRLF2-rearranged and Ph+ acute lymphoblastic leukemia: a report of four patients. Haematologica, 2017, 102, e514-e517.	3.5	13
61	Constitutive Ras signaling and Ink4a/Arf inactivation cooperate during the development of B-ALL in mice. Blood Advances, 2017, 1, 2361-2374.	5.2	11
62	Genetic Alterations and Therapeutic Targeting of Philadelphia-Like Acute Lymphoblastic Leukemia. Genes, 2021, 12, 687.	2.4	11
63	Inotuzumab Ozogamicin (Ino) May Overcome the Impact of Philadelphia Chromosome (Ph)-like Phenotype in Adult Patients (pts) with Relapsed/Refractory (R/R) Acute Lymphoblastic Leukemia (ALL). Blood, 2019, 134, 1641-1641.	1.4	11
64	ZNF384 Fusion Oncoproteins Drive Lineage Aberrancy in Acute Leukemia. Blood Cancer Discovery, 2022, 3, 240-263.	5.0	11
65	At three years, patients with acute lymphoblastic leukaemia are still at risk for relapse. Results of the international MRC UKALLXII/ECOG E2993 trial. British Journal of Haematology, 2020, 191, 37-43.	2.5	9
66	The Heme-Regulated Inhibitor Pathway Modulates Susceptibility of Poor Prognosis B-Lineage Acute Leukemia to BH3-Mimetics. Molecular Cancer Research, 2021, 19, 636-650.	3.4	8
67	Genomic Characterization and Experimental Modeling Of BCR-ABL1-Like Acute Lymphoblastic Leukemia. Blood, 2013, 122, 232-232.	1.4	8
68	Integrated Genomic and Mutational Profiling Of Adolescent and Young Adult ALL Identifies a High Frequency Of BCR-ABL1-Like ALL with Very Poor Outcome. Blood, 2013, 122, 825-825.	1.4	8
69	Amino acid stress response genes promote L-asparaginase resistance in pediatric acute lymphoblastic leukemia. Blood Advances, 2022, 6, 3386-3397.	5.2	8
70	SSBP2-CSF1R is a recurrent fusion in B-lineage acute lymphoblastic leukemia with diverse genetic presentation and variable outcome. Blood, 2021, 137, 1835-1838.	1.4	6
71	Outcomes of Patients with CRLF2-Overexpressing Acute Lymphoblastic Leukemia without Down Syndrome: A Report from the Children's Oncology Group. Blood, 2020, 136, 45-46.	1.4	6
72	<i>GATA3</i> rs3824662A allele in B ell acute lymphoblastic leukemia in adults, adolescents and young adults: association with <i>CRLF2</i> rearrangement and poor prognosis. American Journal of Hematology, 2021, 96, E71-E74.	4.1	5

#	Article	IF	CITATIONS
73	High Frequency and Poor Outcome of Ph-like Acute Lymphoblastic Leukemia in Adults. Blood, 2015, 126, 2618-2618.	1.4	5
74	The Genomic Landscape of Childhood Acute Lymphoblastic Leukemia. Blood, 2019, 134, 649-649.	1.4	5
75	Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia with kinase fusions in Taiwan. Scientific Reports, 2021, 11, 5802.	3.3	4
76	The Frequency and Outcome of Ph-like ALL Associated Abnormalities in Childhood Acute Lymphoblastic Leukaemia Treated on MRC UKALL2003. Blood, 2016, 128, 2914-2914.	1.4	4
77	Outcomes of Children, Adolescents, and Young Adults with Acute Lymphoblastic Leukemia Based on Blast Genotype at Diagnosis: A Report from the Children's Oncology Group. Blood, 2016, 128, 451-451.	1.4	4
78	The <i>EBF1-PDGFRB</i> T681I mutation is highly resistant to imatinib and dasatinib <i>in vitro</i> and detectable in clinical samples prior to treatment. Haematologica, 2021, 106, 2242-2245.	3.5	3
79	Genomic Determinants of Response to Blinatumomab in Relapsed/Refractory (R/R) B-Cell Precursor Acute Lymphoblastic Leukemia in Adults. Blood, 2018, 132, 1552-1552.	1.4	3
80	A BCR-ABL1-Like Gene Expression Profile Confers a Poor Prognosis In Patients with High-Risk Acute Lymphoblastic Leukemia (HR-ALL): A Report From Children's Oncology Group (COG) AALL0232. Blood, 2011, 118, 743-743.	1.4	3
81	Functional Analysis of Kinase-Activating Fusions in Ph-like Acute Lymphoblastic Leukemia. Blood, 2014, 124, 786-786.	1.4	3
82	Combined Targeting of JAK2 with a Type II JAK2 Inhibitor and mTOR with a TOR Kinase Inhibitor Constitutes Synthetic Activity in JAK2-Driven Ph-like Acute Lymphoblastic Leukemia. Blood, 2015, 126, 2529-2529.	1.4	3
83	Genetic Modeling and Therapeutic Targeting of ETV6-NTRK3 with Loxo-101in Acute Lymphoblastic Leukemia. Blood, 2016, 128, 278-278.	1.4	3
84	Genomic Landscape of Relapsed Acute Lymphoblastic Leukemia. Blood, 2015, 126, 692-692.	1.4	3
85	Phase II Study of the Hyper-CVAD Regimen in Combination with Ofatumumab (HCVAD-O) As Frontline Therapy for Adult Patients (pts) with CD20-Positive B-Cell Acute Lymphoblastic Leukemia (B-ALL). Blood, 2019, 134, 2577-2577.	1.4	3
86	Venetoclax and Navitoclax in Pediatric Patients with Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Blood, 2020, 136, 12-13.	1.4	2
87	Mixed Lineage Leukemia Rearrangements (MLL-R) Are Determinants of High Risk Disease in Homeobox A (HOXA)-deregulated T-Lineage Acute Lymphoblastic Leukemia: A Children's Oncology Group Study. Blood, 2015, 126, 694-694.	1.4	2
88	High-Risk Subtype of Ph-like Acute Lymphoblastic Leukemia (ALL) in Adults: Dismal Outcomes of CRLF2+ ALL Patients Treated with Intensive Chemotherapy. Blood, 2016, 128, 1082-1082.	1.4	2
89	Enhanced Risk Stratification of 21,178 Children, Adolescents, and Young Adults with Acute Lymphoblastic Leukemia (ALL) Incorporating White Blood Count (WBC), Age, and Minimal Residual Disease (MRD) at Day 8 and 29 As Continuous Variables: A Children's Oncology Group (COG) Report. Blood. 2020, 136, 39-40.	1.4	2
90	Acute Leukemia Classification Using Transcriptional Profiles From Low-Cost Nanopore mRNA Sequencing. JCO Precision Oncology, 2022, 6, e2100326.	3.0	2

#	Article	IF	CITATIONS
91	TKI resistance in Ph-like ALL. Blood, 2018, 131, 2181-2182.	1.4	1
92	Identifying Drug-Resistant Mutations in Ebf1-Pdgfrb Ph-like Acute Lymphoblastic Leukemia. Blood, 2015, 126, 1423-1423.	1.4	1
93	Expression of an Oncogenic ERG isoform Characterizes a Distinct Subtype of B-Progenitor Acute Lymphoblastic Leukemia. Blood, 2015, 126, 693-693.	1.4	1
94	Association of the GATA3 rs3824662A allele with clinical outcomes in adult patients with adult B-ALL Journal of Clinical Oncology, 2019, 37, 7023-7023.	1.6	1
95	A Genome-Wide Association Study of Susceptibility to Acute Lymphoblastic Leukemia in Adolescents and Young Adults. Blood, 2014, 124, 132-132.	1.4	1
96	Characterization of Leukemias with ETV6-ABL1 Fusion. Blood, 2015, 126, 84-84.	1.4	1
97	Outcomes of Patients with Down Syndrome and CRLF2-Overexpressing Acute Lymphoblastic Leukemia (ALL): A Report from the Children's Oncology Group (COG). Blood, 2020, 136, 44-45.	1.4	1
98	Abstract 2118: Non-coding germline GATA3 variants alter chromatin topology and contribute to pathogenesis of acute lymphoblastic leukemia. , 2021, , .		0
99	Novel Chromosomal Rearrangements and Sequence Mutations in High-Risk Ph-Like Acute Lymphoblastic Leukemia. Blood, 2011, 118, 67-67.	1.4	0
100	Discovery of Novel Recurrent Mutations in Childhood Early T-Cell Precursor Acute Lymphoblastic Leukemia by Whole Genome Sequencing - a Report From the St Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project. Blood, 2011, 118, 68-68.	1.4	0
101	Cryptic Truncating Rearrangements of the Erythropoietin Receptor in Ph-like Acute Lymphoblastic Leukemia. Blood, 2014, 124, 128-128.	1.4	Ο
102	Clinical Implementation of a Testing Algorithm for the Diagnosis of Ph-like B-Cell Acute Lymphoblastic Leukemia. Blood, 2016, 128, 2915-2915.	1.4	0
103	The Influence of the Age of the Bone Marrow Microenvironment on Leukaemia Progression. Blood, 2019, 134, 2748-2748.	1.4	0
104	Comparison of Current and Enhanced Risk Stratification of 21,199 Children, Adolescents, and Young Adults with Acute Lymphoblastic Leukemia Using Objective Risk Categorization Criteria: A Children's Oncology Group Report. Blood, 2021, 138, 2382-2382.	1.4	0
105	The Impact of Genetic Ancestry on the Biology and Prognosis of Childhood Acute Lymphoblastic Leukemia. Blood, 2021, 138, 3476-3476.	1.4	0
106	Amino Acid Stress Response Genes Promote L-Asparaginase Resistance in Pediatric Acute Lymphoblastic Leukemia. Blood, 2021, 138, 3304-3304.	1.4	0
107	CDX2 and IDH1/2: new potential players in ALL. Blood, 2022, 139, 1778-1779.	1.4	О