
Amanda K Fakira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1257437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GPR83 Engages Endogenous Peptides from Two Distinct Precursors to Elicit Differential Signaling. Molecular Pharmacology, 2022, 102, 29-38.	2.3	13
2	Mice heterozygous for a null mutation of CPE show reduced expression of carboxypeptidase e mRNA and enzyme activity but normal physiology, behavior, and levels of neuropeptides. Brain Research, 2022, 1789, 147951.	2.2	1
3	Neuropeptidomic Analysis of a Genetically Defined Cell Type in Mouse Brain and Pituitary. Cell Chemical Biology, 2021, 28, 105-112.e4.	5.2	9
4	PEN Receptor GPR83 in Anxiety-Like Behaviors: Differential Regulation in Global vs Amygdalar Knockdown. Frontiers in Neuroscience, 2021, 15, 675769.	2.8	9
5	Multiscale causal networks identify VCF as a key regulator of Alzheimer's disease. Nature Communications, 2020, 11, 3942.	12.8	94
6	Novel Application for G Protein–Biased Mu Opioid Receptor Agonists in Opioid Relapse Prevention. Biological Psychiatry, 2020, 88, 896-897.	1.3	3
7	The role of the neuropeptide PEN receptor, GPR83, in the reward pathway: Relationship to sex-differences. Neuropharmacology, 2019, 157, 107666.	4.1	12
8	Rescue of Learning and Memory Deficits in the Human Nonsyndromic Intellectual Disability Cereblon Knock-Out Mouse Model by Targeting the AMP-Activated Protein Kinase–mTORC1 Translational Pathway. Journal of Neuroscience, 2018, 38, 2780-2795.	3.6	27
9	The Contribution of the Descending Pain Modulatory Pathway in Opioid Tolerance. Frontiers in Neuroscience, 2018, 12, 886.	2.8	38
10	Targeting the Recently Deorphanized Receptor GPR83 for the Treatment of Immunological, Neuroendocrine and Neuropsychiatric Disorders. Progress in Molecular Biology and Translational Science, 2018, 159, 1-25.	1.7	15
11	Collybolide is a novel biased agonist of κ-opioid receptors with potent antipruritic activity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6041-6046.	7.1	29
12	Morphine-Associated Contextual Cues Induce Structural Plasticity in Hippocampal CA1 Pyramidal Neurons. Neuropsychopharmacology, 2016, 41, 2668-2678.	5.4	25
13	Identification of GPR83 as the receptor for the neuroendocrine peptide PEN. Science Signaling, 2016, 9, ra43.	3.6	66
14	Allosteric signaling through an mGlu2 and 5-HT _{2A} heteromeric receptor complex and its potential contribution to schizophrenia. Science Signaling, 2016, 9, ra5.	3.6	91
15	Evidence of CNIH3 involvement in opioid dependence. Molecular Psychiatry, 2016, 21, 608-614.	7.9	109
16	In vivo activation of the SK channel in the spinal cord reduces the NMDA receptor antagonist dose needed to produce antinociception in an inflammatory pain model. Pain, 2015, 156, 849-858.	4.2	15
17	Hippocampal Long-Term Potentiation Is Disrupted during Expression and Extinction But Is Restored after Reinstatement of Morphine Place Preference. Journal of Neuroscience, 2014, 34, 527-538.	3.6	65
18	Increased Small Conductance Calcium-Activated Potassium Type 2 Channel-Mediated Negative Feedback on N-methyl-D-aspartate Receptors Impairs Synaptic Plasticity Following Context-Dependent Sensitization to Morphine. Biological Psychiatry, 2014, 75, 105-114.	1.3	39

#	Article	IF	CITATIONS
19	Purkinje cell dysfunction and delayed death in plasma membrane calcium ATPase 2-heterozygous mice. Molecular and Cellular Neurosciences, 2012, 51, 22-31.	2.2	12
20	Hippocampal GluA1-Containing AMPA Receptors Mediate Context-Dependent Sensitization to Morphine. Journal of Neuroscience, 2011, 31, 16279-16291.	3.6	45
21	Molecular alterations in the cerebellum of the plasma membrane calcium ATPase 2 (PMCA2)-null mouse indicate abnormalities in Purkinje neurons. Molecular and Cellular Neurosciences, 2007, 34, 178-188.	2.2	46
22	Role of Plasma Membrane Calcium ATPase Isoform 2 in Neuronal Function in the Cerebellum and Spinal Cord. Annals of the New York Academy of Sciences, 2007, 1099, 287-291.	3.8	6