## Jeppe Madsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1257227/publications.pdf Version: 2024-02-01



IEDDE MADSEN

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | One reaction to make highly stretchable or extremely soft silicone elastomers from easily available materials. Nature Communications, 2022, 13, 370.                                                               | 12.8 | 33        |
| 2  | Highly Stretchable Silicone Elastomer Applied in Soft Actuators. Macromolecular Rapid<br>Communications, 2022, 43, e2100732.                                                                                       | 3.9  | 9         |
| 3  | Novel polyrotaxane cross-linkers as a versatile platform for slide-ring silicone. Bioinspiration and Biomimetics, 2021, 16, 025002.                                                                                | 2.9  | 6         |
| 4  | Toward a Design for Flowable and Extensible Ionomers: An Example of Diamine-Neutralized Entangled Poly(styrene-co-4-vinylbenzoic acid) Ionomer Melts. Macromolecules, 2021, 54, 2306-2315.                         | 4.8  | 15        |
| 5  | Polystyrene Hybrid-Vitrimer Based on the Hemiacetal Ester Exchange Reaction. Macromolecules, 2021, 54, 6772-6779.                                                                                                  | 4.8  | 12        |
| 6  | A Synthetic Overview of Preparation Protocols of Nonmetallic, Contactâ€Active Antimicrobial<br>Quaternary Surfaces on Polymer Substrates. Macromolecular Rapid Communications, 2021, 42,<br>2100437.               | 3.9  | 5         |
| 7  | Elastomers without Covalent Cross-Linking: Concatenated Rings Giving Rise to Elasticity. ACS Macro<br>Letters, 2020, 9, 1458-1463.                                                                                 | 4.8  | 26        |
| 8  | Hemiacetal Ester Exchanges, Study of Reaction Conditions and Mechanistic Pathway. Reactions, 2020,<br>1, 89-101.                                                                                                   | 2.1  | 9         |
| 9  | Improvement of Mechanical Properties of Anisotropic Glassy Polystyrene by Introducing Heat-Labile<br>Reversible Bonds. Macromolecules, 2019, 52, 9261-9271.                                                        | 4.8  | 6         |
| 10 | Probing the local lipid environment of the cytochrome bc1 and Synechocystis sp. PCC 6803 cytochrome b6f complexes with styrene maleic acid. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 215-225.    | 1.0  | 29        |
| 11 | Fabrication of microstructured binary polymer brush "corrals―with integral pH sensing for studies of proton transport in model membrane systems. Chemical Science, 2018, 9, 2238-2251.                             | 7.4  | 26        |
| 12 | Highly Anisotropic Glassy Polystyrenes Are Flexible. ACS Macro Letters, 2018, 7, 1126-1130.                                                                                                                        | 4.8  | 24        |
| 13 | Enhancing the electro-mechanical properties of polydimethylsiloxane elastomers through blending<br>with poly(dimethylsiloxane- <i>co</i> -methylphenylsiloxane) copolymers. RSC Advances, 2018, 8,<br>23077-23088. | 3.6  | 17        |
| 14 | pH-Responsive diblock copolymers with two different fluorescent labels for simultaneous<br>monitoring of micellar self-assembly and degree of protonation. Polymer Chemistry, 2018, 9, 2964-2976.                  | 3.9  | 13        |
| 15 | Blob Size Controls Diffusion of Free Polymer in a Chemically Identical Brush in Semidilute Solution.<br>Macromolecules, 2018, 51, 6312-6317.                                                                       | 4.8  | 5         |
| 16 | Micrometre and nanometre scale patterning of binary polymer brushes, supported lipid bilayers and proteins. Chemical Science, 2017, 8, 4517-4526.                                                                  | 7.4  | 20        |
| 17 | Influence of salt on the solution dynamics of a phosphorylcholine-based polyzwitterion. European<br>Polymer Journal, 2017, 87, 449-457.                                                                            | 5.4  | 12        |
| 18 | Singleâ€Molecule Encapsulation: A Straightforward Route to Highly Stable and Printable Enzymes.<br>Small, 2016, 12, 1716-1722.                                                                                     | 10.0 | 32        |

Jeppe Madsen

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Antimicrobial Graft Copolymer Gels. Biomacromolecules, 2016, 17, 2710-2718.                                                                                                                               | 5.4  | 13        |
| 20 | Frequent mechanical stress suppresses proliferation of mesenchymal stem cells from human bone marrow without loss of multipotency. Scientific Reports, 2016, 6, 24264.                                    | 3.3  | 39        |
| 21 | Fine Adjustment of Interfacial Potential between pH-Responsive Hydrogels and Cell-Sized Particles.<br>Langmuir, 2015, 31, 8689-8696.                                                                      | 3.5  | 11        |
| 22 | Characterization of Diblock Copolymer Order-Order Transitions in Semidilute Aqueous Solution<br>Using Fluorescence Correlation Spectroscopy. Macromolecular Rapid Communications, 2015, 36,<br>1572-1577. | 3.9  | 13        |
| 23 | LRP-1-mediated intracellular antibody delivery to the Central Nervous System. Scientific Reports, 2015, 5, 11990.                                                                                         | 3.3  | 113       |
| 24 | Nanoscale detection of metal-labeled copolymers in patchy polymersomes. Polymer Chemistry, 2015, 6, 2065-2068.                                                                                            | 3.9  | 26        |
| 25 | Disulfide-Functionalized Diblock Copolymer Worm Gels. Biomacromolecules, 2015, 16, 2514-2521.                                                                                                             | 5.4  | 41        |
| 26 | Live cell tracking of symmetry break in actin cytoskeleton triggered by abrupt changes in micromechanical environments. Biomaterials Science, 2015, 3, 1539-1544.                                         | 5.4  | 13        |
| 27 | Microgel Colloidosomes Based on pH-Responsive Poly( <i>tert</i> butylaminoethyl methacrylate)<br>Latexes. Langmuir, 2014, 30, 12509-12519.                                                                | 3.5  | 27        |
| 28 | Translocation of flexible polymersomes across pores at the nanoscale. Biomaterials Science, 2014, 2, 680-692.                                                                                             | 5.4  | 20        |
| 29 | Polymersome-Mediated Delivery of Combination Anticancer Therapy to Head and Neck Cancer Cells: 2D and 3D <i>in Vitro</i> Evaluation. Molecular Pharmaceutics, 2014, 11, 1176-1188.                        | 4.6  | 122       |
| 30 | Nile Blue-Based Nanosized pH Sensors for Simultaneous Far-Red and Near-Infrared Live Bioimaging.<br>Journal of the American Chemical Society, 2013, 135, 14863-14870.                                     | 13.7 | 119       |
| 31 | Fully synthetic polymer vesicles for intracellular delivery of antibodies in live cells. FASEB Journal, 2013, 27, 98-108.                                                                                 | 0.5  | 67        |
| 32 | Enhanced drug delivery to melanoma cells using PMPC-PDPA polymersomes. Cancer Letters, 2013, 334, 328-337.                                                                                                | 7.2  | 81        |
| 33 | Encapsulation of Biomacromolecules within Polymersomes by Electroporation. Angewandte Chemie -<br>International Edition, 2012, 51, 11122-11125.                                                           | 13.8 | 101       |
| 34 | Thiol-Functionalized Block Copolymer Vesicles. ACS Macro Letters, 2012, 1, 1041-1045.                                                                                                                     | 4.8  | 47        |
| 35 | (Meth)acrylic stimulus-responsive block copolymer hydrogels. Soft Matter, 2012, 8, 592-605.                                                                                                               | 2.7  | 62        |
| 36 | Controlling Polymersome Surface Topology at the Nanoscale by Membrane Confined Polymer/Polymer<br>Phase Separation. ACS Nano, 2011, 5, 1775-1784.                                                         | 14.6 | 154       |

JEPPE MADSEN

| #  | Article                                                                                                                                                                                                            | IF               | CITATIONS    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 37 | Quantitative Evaluation of Mechanosensing of Cells on Dynamically Tunable Hydrogels. Journal of the American Chemical Society, 2011, 133, 1367-1374.                                                               | 13.7             | 164          |
| 38 | Mechanistic Insights for Block Copolymer Morphologies: How Do Worms Form Vesicles?. Journal of the American Chemical Society, 2011, 133, 16581-16587.                                                              | 13.7             | 708          |
| 39 | Synthesis of Rhodamine 6G-Based Compounds for the ATRP Synthesis of Fluorescently Labeled<br>Biocompatible Polymers. Biomacromolecules, 2011, 12, 2225-2234.                                                       | 5.4              | 33           |
| 40 | Wet Nanoscale Imaging and Testing of Polymersomes. Small, 2011, 7, 2010-2015.                                                                                                                                      | 10.0             | 25           |
| 41 | Efficient Encapsulation of Plasmid DNA in pH‧ensitive PMPC–PDPA Polymersomes: Study of the Effect<br>of PDPA Block Length on Copolymer–DNA Binding Affinity. Macromolecular Bioscience, 2010, 10,<br>513-530.      | 4.1              | 99           |
| 42 | Internalization and biodistribution of polymersomes into oral squamous cell carcinoma cells <i>in vitro</i> and <i>in vivo</i> . Nanomedicine, 2010, 5, 1025-1036.                                                 | 3.3              | 49           |
| 43 | Nonâ€Fouling Character of Poly[2â€(methacryloyloxy)ethyl Phosphorylcholine]â€Modified Gold Surfaces<br>Fabricated by the â€~Grafting to' Method: Comparison of its Protein Resistance with Poly(ethylene) Tj ETQq1 | 1 <b>£</b> 97843 | 1482gBT /Ove |
| 44 | Antimicrobial activity of novel biocompatible wound dressings based on triblock copolymer hydrogels. Journal of Materials Science, 2009, 44, 6233-6246.                                                            | 3.7              | 24           |
| 45 | Diffusion Studies of Nanometer Polymersomes Across Tissue Engineered Human Oral Mucosa.<br>Pharmaceutical Research, 2009, 26, 1718-1728.                                                                           | 3.5              | 66           |
| 46 | Controlling Cellular Uptake by Surface Chemistry, Size, and Surface Topology at the Nanoscale. Small, 2009, 5, 2424-2432.                                                                                          | 10.0             | 220          |
| 47 | Preparation and Aqueous Solution Properties of Thermoresponsive Biocompatible AB Diblock<br>Copolymers. Biomacromolecules, 2009, 10, 1875-1887.                                                                    | 5.4              | 62           |
| 48 | Supercritical fluids applied to the sol–gel process for preparation of AEROMOSILS/palladium particle nanocomposite catalyst. Journal of Supercritical Fluids, 2008, 46, 178-184.                                   | 3.2              | 12           |
| 49 | Biocompatible Wound Dressings Based on Chemically Degradable Triblock Copolymer Hydrogels.<br>Biomacromolecules, 2008, 9, 2265-2275.                                                                               | 5.4              | 133          |
| 50 | Facile Synthesis of Well-Defined Hydrophilic Methacrylic Macromonomers Using ATRP and Click<br>Chemistry. Macromolecules, 2008, 41, 9542-9547.                                                                     | 4.8              | 79           |
| 51 | Non-cytotoxic polymer vesicles for rapid and efficient intracellular delivery. Faraday Discussions, 2008, 139, 143.                                                                                                | 3.2              | 162          |
| 52 | Preparation and Aqueous Solution Properties of New Thermoresponsive Biocompatible ABA Triblock<br>Copolymer Gelators. Macromolecules, 2006, 39, 7455-7457.                                                         | 4.8              | 77           |
| 53 | A New Class of Biochemically Degradable, Stimulus-Responsive Triblock Copolymer Gelators.<br>Angewandte Chemie - International Edition, 2006, 45, 3510-3513.                                                       | 13.8             | 229          |
| 54 | Lasing and Narrowing of Spontaneous Emission from Responsive Cholesteric Films. Chemistry of Materials, 2004, 16, 1397-1399.                                                                                       | 6.7              | 44           |