
Klaus Harms

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1255341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electricity-driven asymmetric Lewis acid catalysis. Nature Catalysis, 2019, 2, 34-40.	34.4	122
2	Heteronuclear cobalt(<scp>iii</scp>)/sodium complexes with salen type compartmental Schiff base ligands: methylene spacer regulated variation in nuclearity. Dalton Transactions, 2018, 47, 331-347.	3.3	61
3	Representation of a photosensitive Schottky barrier diode made with hetero-dinuclear cobalt(<scp>iii</scp>)/sodium building blocks. New Journal of Chemistry, 2020, 44, 1285-1293.	2.8	34
4	Ïf-Hole halogen bonding interactions in a mixed valence cobalt(<scp>iii</scp> / <scp>ii</scp>) complex and anti-electrostatic hydrogen bonding interaction in a cobalt(<scp>iii</scp>) complex: a theoretical insight. CrystEngComm, 2018, 20, 7281-7292.	2.6	33
5	Methylene spacer regulated variation in conformation of tetradentate N ₂ O ₂ donor Schiff bases trapped in manganese(<scp>iii</scp>) complexes. CrystEngComm, 2018, 20, 1077-1086.	2.6	27
6	Design of non-ionic carbon superbases: second generation carbodiphosphoranes. Chemical Science, 2019, 10, 9483-9492.	7.4	21
7	End-on cyanate or end-to-end thiocyanate bridged dinuclear copper(<scp>ii</scp>) complexes with a tridentate Schiff base blocking ligand: synthesis, structure and magnetic studies. New Journal of Chemistry, 2018, 42, 1634-1641.	2.8	20
8	Transition metal complexes of a versatile polyalkoxy oxazolidine-based ligand derived from <i>in situ</i> cyclization. Dalton Transactions, 2018, 47, 6156-6165.	3.3	13
9	An experimental and computational study on isomerically pure, soluble azaphthalocyanines and their complexes and boron azasubphthalocyanines of a varying number of aza units. Organic and Biomolecular Chemistry, 2018, 16, 6586-6599.	2.8	13
10	Directed C(sp ³)–H arylation of tryptophan: transformation of the directing group into an activated amide. Chemical Science, 2019, 10, 8634-8641.	7.4	12
11	Bis-Cyclometalated Indazole and Benzimidazole Chiral-at-Iridium Complexes: Synthesis and Asymmetric Catalysis. Molecules, 2021, 26, 1822.	3.8	8
12	Lewis acid–base adducts of Al(N(C ₆ F ₅) ₂) ₃ and Ga(N(C ₆ F ₅) ₂) ₃ – structural features and dissociation enthalpies. Dalton Transactions, 2022, 51, 4829-4835.	3.3	1