
Richard Murdey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1255272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Starburst Carbazole Derivatives as Efficient Hole Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100877.	5.8	6
2	Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy and Environmental Science, 2022, 15, 2096-2107.	30.8	172
3	Operational stability, low light performance, and long-lived transients in mixed-halide perovskite solar cells with a monolayer-based hole extraction layer. Solar Energy Materials and Solar Cells, 2022, 245, 111885.	6.2	2
4	Near-Ultraviolet Transparent Organic Hole-Transporting Materials Containing Partially Oxygen-Bridged Triphenylamine Skeletons for Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1484-1495.	5.1	11
5	Formation of <i>trans</i> -Poly(thienylenevinylene) Thin Films by Solid-State Thermal Isomerization. Chemistry of Materials, 2021, 33, 5631-5638.	6.7	2
6	Mixed lead–tin perovskite films with >7 μs charge carrier lifetimes realized by maltol post-treatment. Chemical Science, 2021, 12, 13513-13519.	7.4	36
7	Materials Chemistry Approach for Efficient Lead-Free Tin Halide Perovskite Solar Cells. ACS Applied Electronic Materials, 2020, 2, 3794-3804.	4.3	36
8	Sn(IV)-free tin perovskite films realized by in situ Sn(0) nanoparticle treatment of the precursor solution. Nature Communications, 2020, 11, 3008.	12.8	196
9	Additive-free, Cost-Effective Hole-Transporting Materials for Perovskite Solar Cells Based on Vinyl Triarylamines. ACS Applied Materials & Interfaces, 2020, 12, 32994-33003.	8.0	17
10	Hole-Transporting Polymers Containing Partially Oxygen-Bridged Triphenylamine Units and Their Application for Perovskite Solar Cells. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2020, 33, 505-516.	0.3	4
11	Transparent Hole-Transporting Materials Containing Partially Oxygen-Bridged Triphenylamine Skeletons for Efficient Perovskite Solar Cells. ECS Meeting Abstracts, 2020, MA2020-02, 1867-1867.	0.0	0
12	lodine-rich mixed composition perovskites optimised for tin(<scp>iv</scp>) oxide transport layers: the influence of halide ion ratio, annealing time, and ambient air aging on solar cell performance. Journal of Materials Chemistry A, 2019, 7, 16947-16953.	10.3	32
13	How to Make Dense and Flat Perovskite Layers for >20% Efficient Solar Cells: Oriented, Crystalline Perovskite Intermediates and Their Thermal Conversion. Bulletin of the Chemical Society of Japan, 2019, 92, 1972-1979.	3.2	17
14	Alternative Face-on Thin Film Structure of Pentacene. Scientific Reports, 2019, 9, 579.	3.3	40
15	Phthalimideâ€Based Transparent Electronâ€Transport Materials with Orientedâ€Amorphous Structures: Preparation from Solutionâ€Processed Precursor Films. ChemPlusChem, 2019, 84, 1396-1404.	2.8	10
16	A Purified, Solventâ€Intercalated Precursor Complex for Wideâ€Processâ€Window Fabrication of Efficient Perovskite Solar Cells and Modules. Angewandte Chemie, 2019, 131, 9489-9493.	2.0	5
17	A Purified, Solventâ€Intercalated Precursor Complex for Wideâ€Processâ€Window Fabrication of Efficient Perovskite Solar Cells and Modules. Angewandte Chemie - International Edition, 2019, 58, 9389-9393.	13.8	46
18	Donor–acceptor polymers containing thiazole-fused benzothiadiazole acceptor units for organic solar cells. RSC Advances, 2019, 9, 7107-7114.	3.6	17

RICHARD MURDEY

#	Article	IF	CITATIONS
19	Influence of Alkoxy Chain Length on the Properties of Twoâ€Dimensionally Expanded Azuleneâ€Coreâ€Based Holeâ€Transporting Materials for Efficient Perovskite Solar Cells. Chemistry - A European Journal, 2019, 25, 6741-6752.	3.3	21
20	Molecular Orientation Change in Naphthalene Diimide Thin Films Induced by Removal of Thermally Cleavable Substituents. Chemistry of Materials, 2019, 31, 1729-1737.	6.7	40
21	Impact of Kinetically Restricted Structure on Thermal Conversion of Zinc Tetraphenylporphyrin Thin Films to the Triclinic and Monoclinic Phases. Journal of Physical Chemistry C, 2018, 122, 4540-4545.	3.1	6
22	Thermally activated electrical conductivity of thin films of bis(phthalocyaninato)terbium(III) double decker complex. Thin Solid Films, 2018, 646, 17-20.	1.8	5
23	Leadâ€Free Solar Cells based on Tin Halide Perovskite Films with High Coverage and Improved Aggregation. Angewandte Chemie - International Edition, 2018, 57, 13221-13225.	13.8	111
24	Leadâ€Free Solar Cells based on Tin Halide Perovskite Films with High Coverage and Improved Aggregation. Angewandte Chemie, 2018, 130, 13405-13409.	2.0	36
25	Accurate Molecular Orientation Analysis Using Infrared p-Polarized Multiple-Angle Incidence Resolution Spectrometry (pMAIRS) Considering the Refractive Index of the Thin Film Sample. Applied Spectroscopy, 2017, 71, 1242-1248.	2.2	22
26	Photocurrent Action Spectra of Organic Semiconductors. , 2015, , 627-652.		2
27	Interpretation of the thermal activation energy of conduction for molecular semiconductor thin films with blocking contacts. Japanese Journal of Applied Physics, 2014, 53, 05FY04.	1.5	4
28	Quantitatively identical orientation-dependent ionization energy and electron affinity of diindenoperylene. Applied Physics Letters, 2013, 103, .	3.3	27
29	Voltage stress induced reversible diode behavior in pentacene thin films. Journal of Chemical Physics, 2012, 137, 234703.	3.0	2
30	Decay Mechanism of Spontaneously Built-up Surface Potential in a Thin Film of a Zwitterionic Molecule Having Noncentrosymmetric Crystal Structure. Journal of Physical Chemistry C, 2011, 115, 2356-2359.	3.1	0
31	In situ conductance measurements of copper phthalocyanine thin film growth on sapphire [0001]. Journal of Chemical Physics, 2011, 134, 234702.	3.0	4
32	Spontaneous buildup of surface potential with a thin film of a zwitterionic molecule giving noncentrosymmetric crystal structure. Applied Physics Letters, 2009, 95, 182901.	3.3	4
33	An Accurate Calculation of Electronic Contribution to Static Permittivity Tensor for Organic Molecular Crystals on the Basis of the Charge Response Kernel Theory. Journal of Physical Chemistry A, 2009, 113, 9207-9212.	2.5	14
34	Direct observation of the energy gap in lutetium bisphthalocyanine thin films. Synthetic Metals, 2009, 159, 1677-1681.	3.9	26
35	Structure and mechanical properties of arc evaporated Ti–Al–O–N thin films. Surface and Coatings Technology, 2007, 201, 6392-6403.	4.8	91
36	Vibronic Coupling in the Ground and Excited States of Oligoacene Cationsâ€. Journal of Physical Chemistry B, 2006, 110, 18904-18911.	2.6	140

RICHARD MURDEY

#	Article	IF	CITATIONS
37	Frontier Electronic Structures in Fluorinated Copper Phthalocyanine Thin Films Studied Using Ultraviolet and Inverse Photoemission Spectroscopies. Molecular Crystals and Liquid Crystals, 2006, 455, 211-218.	0.9	57
38	An atom-transparent photon block for metal-atom deposition from high-temperature ovens. Review of Scientific Instruments, 2005, 76, 023911.	1.3	3
39	Charge Injection Barrier Heights Across Multilayer Organic Thin Films. Japanese Journal of Applied Physics, 2005, 44, 3751-3756.	1.5	47
40	Core excitations of naphthalene: Vibrational structure versus chemical shifts. Journal of Chemical Physics, 2004, 121, 5733-5739.	3.0	45
41	Electronic structure of a novel alkylidene fluorene polymer in the pristine state. Chemical Physics Letters, 2004, 385, 184-188.	2.6	5
42	Interfacial charge injection barriers in organic light-emitting diodes: the effect of thin interlayers of organic donor-acceptor molecules TTF and TCNQ. , 2004, , .		3
43	Calorimetry of Polymer Metallization:Â Copper, Calcium, and Chromium on PMDA-ODA Polyimide. Journal of the American Chemical Society, 2003, 125, 3995-3998.	13.7	37
44	Adsorption Hysteresis and Interparticle Capillary Condensation in a Nonporous Carbon Black. Langmuir, 1996, 12, 6501-6505.	3.5	7
45	Temperature-dependent self absorption of the 3P0→3H4 transition in Gd3Ga5O12:Pr3+. Optical Materials, 1996, 6, 203-209.	3.6	4
46	Adsorption Hysteresis and the Pore Size Distribution of a Microporous Silica Gel. Langmuir, 1994, 10, 3842-3844.	3.5	6
47	Realizing Efficient and Reproducible Lead-free Perovskite Solar Cells with Purified Precursor Materials and Modified Solution Process. , 0, , .		0

Light Intensity Dependence Study of Mixed-composition Perovskite Solar Cells. , 0, , .

0