
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1255117/publications.pdf Version: 2024-02-01

ΔΜΙΤ Ρ ΡΛΤΕΙ

#	Article	IF	CITATIONS
1	HRS Expert Consensus Statement on the Diagnosis and Management of Arrhythmias Associated With Cardiac Sarcoidosis. Heart Rhythm, 2014, 11, 1304-1323.	0.7	1,077
2	Role of Cardiac Magnetic Resonance inÂtheÂDiagnosis and Prognosis ofÂNonischemicÂCardiomyopathy. JACC: Cardiovascular Imaging, 2017, 10, 1180-1193.	5.3	189
3	Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 14.	3.3	187
4	Prognostic Value of Myocardial Scarring on CMR in Patients With Cardiac Sarcoidosis. JACC: Cardiovascular Imaging, 2017, 10, 411-420.	5.3	185
5	Cardiac Magnetic Resonance Stress Perfusion Imaging for Evaluation of Patients WithÂChestÂPain. Journal of the American College of Cardiology, 2019, 74, 1741-1755.	2.8	177
6	Transthoracic 3D Echocardiographic LeftÂHeart Chamber Quantification UsingÂan Automated Adaptive AnalyticsÂAlgorithm. JACC: Cardiovascular Imaging, 2016, 9, 769-782.	5.3	171
7	Prognosis of Myocardial Damage in Sarcoidosis Patients With Preserved Left Ventricular Ejection Fraction. Circulation: Cardiovascular Imaging, 2016, 9, e003738.	2.6	167
8	Assessment of Advanced Coronary Artery Disease. Journal of the American College of Cardiology, 2010, 56, 561-569.	2.8	149
9	Age-Related Normal Range of Left Ventricular Strain and Torsion Using Three-Dimensional Speckle-Tracking Echocardiography. Journal of the American Society of Echocardiography, 2014, 27, 55-64.	2.8	149
10	Implantable Cardioverter Defibrillator Therapy in Patients with Cardiac Sarcoidosis. Journal of Cardiovascular Electrophysiology, 2012, 23, 925-929.	1.7	135
11	Cardiovascular magnetic resonance in rheumatology: Current status and recommendations for use. International Journal of Cardiology, 2016, 217, 135-148.	1.7	114
12	Molecular Imaging of Atherosclerotic Plaques Targeted to Oxidized LDL Receptor LOX-1 by SPECT/CT and Magnetic Resonance. Circulation: Cardiovascular Imaging, 2010, 3, 464-472.	2.6	110
13	Myocardial damage in patients with sarcoidosis and preserved left ventricular systolic function: an observational study. European Journal of Heart Failure, 2011, 13, 1231-1237.	7.1	97
14	Novel Approach to Three-Dimensional Echocardiographic Quantification of Right Ventricular Volumes and Function from Focused Views. Journal of the American Society of Echocardiography, 2015, 28, 1222-1231.	2.8	96
15	Accuracy of aortic annular measurements obtained from three-dimensional echocardiography, CT and MRI: human in vitro and in vivo studies. Heart, 2012, 98, 1146-1152.	2.9	84
16	Relation of Left Atrial Volume from Three-Dimensional Computed Tomography to Atrial Fibrillation Recurrence Following Ablation. American Journal of Cardiology, 2009, 103, 989-993.	1.6	82
17	QTc prolongation is associated with impaired right ventricular function and predicts mortality in pulmonary hypertension. International Journal of Cardiology, 2013, 167, 669-676.	1.7	77
18	Machine Learning–Based Three-Dimensional Echocardiographic Quantification of Right Ventricular Size and Function: Validation Against Cardiac Magnetic Resonance. Journal of the American Society of Echocardiography, 2019, 32, 969-977.	2.8	76

#	Article	IF	CITATIONS
19	2D and 3D Echocardiography-Derived Indices of Left Ventricular FunctionÂandÂShape. JACC: Cardiovascular Imaging, 2018, 11, 1569-1579.	5.3	60
20	Reproducibility study on myocardial strain assessment using fast-SENC cardiac magnetic resonance imaging. Scientific Reports, 2018, 8, 14100.	3.3	60
21	Machine learning based automated dynamic quantification of left heart chamber volumes. European Heart Journal Cardiovascular Imaging, 2019, 20, 541-549.	1.2	59
22	Warm ischemia less than 30 minutes is not necessarily safe during partial nephrectomy: Every minute matters. Urologic Oncology: Seminars and Original Investigations, 2011, 29, 826-828.	1.6	58
23	Cost-Effectiveness Analysis of Stress Cardiovascular Magnetic Resonance Imaging for Stable Chest Pain Syndromes. JACC: Cardiovascular Imaging, 2020, 13, 1505-1517.	5.3	58
24	Stress Cardiac Magnetic Resonance Myocardial Perfusion Imaging. Journal of the American College of Cardiology, 2021, 78, 1655-1668.	2.8	57
25	Cardiac Sarcoidosis Detected by Late Gadolinium Enhancement and Prevalence of Atrial Arrhythmias. American Journal of Cardiology, 2014, 113, 1556-1560.	1.6	55
26	Echocardiography and cardiovascular magnetic resonance based evaluation of myocardial strain and relationship with late gadolinium enhancement. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 46.	3.3	54
27	Improved detection of myocardial damage in sarcoidosis using longitudinal strain in patients with preserved left ventricular ejection fraction. Echocardiography, 2016, 33, 1344-1352.	0.9	53
28	Strainâ€encoded magnetic resonance: a method for the assessment of myocardial deformation. ESC Heart Failure, 2019, 6, 584-602.	3.1	51
29	Valsartan in early-stage hypertrophic cardiomyopathy: a randomized phase 2 trial. Nature Medicine, 2021, 27, 1818-1824.	30.7	51
30	Rapid Estimation of Left Ventricular Function Using Echocardiographic Speckle-Tracking of Mitral Annular Displacement. Journal of the American Society of Echocardiography, 2010, 23, 511-515.	2.8	50
31	Society of cardiovascular computed tomography expert consensus document on myocardial computed tomography perfusion imaging. Journal of Cardiovascular Computed Tomography, 2020, 14, 87-100.	1.3	49
32	Mechanistic Insights and Characterization of Sickle Cell Disease–Associated Cardiomyopathy. Circulation: Cardiovascular Imaging, 2014, 7, 430-437.	2.6	47
33	The WHO Classification of Pulmonary Hypertension: A Caseâ€Based Imaging Compendium. Pulmonary Circulation, 2012, 2, 107-121.	1.7	45
34	Impact of Implantable Transvenous Device Lead Location on Severity of Tricuspid Regurgitation. Journal of the American Society of Echocardiography, 2014, 27, 1164-1175.	2.8	44
35	Right Heart Involvement in Patients with Sarcoidosis. Echocardiography, 2016, 33, 734-741.	0.9	43
36	Sample Size and Cost Analysis for Pulmonary Arterial Hypertension Drug Trials Using Various Imaging Modalities to Assess Right Ventricular Size and Function End Points. Circulation: Cardiovascular Imaging, 2014, 7, 115-124.	2.6	40

#	Article	IF	CITATIONS
37	Myocardial computed tomography perfusion. Cardiovascular Diagnosis and Therapy, 2017, 7, 452-462.	1.7	40
38	A Novel Molecular Signature for Elevated Tricuspid Regurgitation Velocity in Sickle Cell Disease. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 359-368.	5.6	39
39	Cardiac cycle–dependent left atrial dynamics: Implications for catheter ablation of atrial fibrillation. Heart Rhythm, 2008, 5, 787-793.	0.7	37
40	Considerations when measuring myocardial perfusion reserve by cardiovascular magnetic resonance using regadenoson. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 89.	3.3	37
41	Automated, machine learningâ€based, 3D echocardiographic quantification of left ventricular mass. Echocardiography, 2019, 36, 312-319.	0.9	37
42	Fast Strain-Encoded Cardiac MagneticÂResonance for Diagnostic Classification and Risk Stratification of Heart Failure Patients. JACC: Cardiovascular Imaging, 2021, 14, 1177-1188.	5.3	37
43	Imaging of Clinically Unrecognized Myocardial Fibrosis in Patients With Suspected Coronary Artery Disease. Journal of the American College of Cardiology, 2020, 76, 945-957.	2.8	36
44	Detection of myocardial perfusion abnormalities using ultra-low radiation dose regadenoson stress multidetector computed tomography. Journal of Cardiovascular Computed Tomography, 2011, 5, 247-254.	1.3	35
45	Myocardial Perfusion: Near-automated Evaluation from Contrast-enhanced MR Images Obtained at Rest and during Vasodilator Stress. Radiology, 2012, 265, 576-583.	7.3	35
46	First Clinical Experience With 3-Dimensional Echocardiographic Transillumination Rendering. JACC: Cardiovascular Imaging, 2019, 12, 1868-1871.	5.3	35
47	Realâ€Time Rotational ICE Imaging of the Relationship of the Ablation Catheter Tip and the Esophagus During Atrial Fibrillation Ablation. Journal of Cardiovascular Electrophysiology, 2009, 20, 130-137.	1.7	34
48	Evaluation of Myocardial Deformation in Patients with Sickle Cell Disease and Preserved Ejection Fraction Using Threeâ€Dimensional Speckle Tracking Echocardiography. Echocardiography, 2012, 29, 962-969.	0.9	33
49	Three-Dimensional Modeling of the Right Ventricle from Two-Dimensional Transthoracic Echocardiographic Images: Utility of Knowledge-Based Reconstruction in Pulmonary Arterial Hypertension. Journal of the American Society of Echocardiography, 2013, 26, 860-867.	2.8	33
50	Diagnosis and Management of Pulmonary Hypertension in Systemic Sclerosis. Current Rheumatology Reports, 2010, 12, 8-18.	4.7	29
51	Bilateral Synchronous Sporadic Renal Tumors: Pathologic Concordance and Clinical Implications. Urology, 2011, 78, 1095-1099.	1.0	28
52	Feasibility of Cardiac Magnetic Resonance Wideband Protocol in Patients With Implantable Cardioverter Defibrillators and Its Utility for Defining Scar. American Journal of Cardiology, 2019, 123, 1329-1335.	1.6	27
53	Three-dimensional analysis of interventricular septal curvature from cardiac magnetic resonance images for the evaluation of patients with pulmonary hypertension. International Journal of Cardiovascular Imaging, 2012, 28, 1073-1085.	1.5	26
54	Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strain-encoded cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 92.	3.3	26

#	Article	IF	CITATIONS
55	3D echocardiographic analysis of aortic annulus for transcatheter aortic valve replacement using novel aortic valve quantification software: Comparison with computed tomography. Echocardiography, 2017, 34, 690-699.	0.9	25
56	Quantification of Right Ventricular Size and Function from Contrast-Enhanced Three-Dimensional Echocardiographic Images. Journal of the American Society of Echocardiography, 2017, 30, 1193-1202.	2.8	25
57	Strain-encoded cardiac magnetic resonance imaging: a new approach for fast estimation of left ventricular function. BMC Cardiovascular Disorders, 2019, 19, 52.	1.7	24
58	Prognostic value of normal regadenoson stress perfusion cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 108.	3.3	23
59	Myocardial strain analysis of the right ventricle: comparison of different cardiovascular magnetic resonance and echocardiographic techniques. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 51.	3.3	23
60	Evaluation of Stress Cardiac Magnetic Resonance Imaging in Risk Reclassification of Patients With Suspected Coronary Artery Disease. JAMA Cardiology, 2020, 5, 1401.	6.1	23
61	Evaluation of the microcirculation: Advances in cardiac magnetic resonance perfusion imaging. Journal of Nuclear Cardiology, 2008, 15, 698-708.	2.1	22
62	Association of circulating transcriptomic profiles with mortality in sickle cell disease. Blood, 2017, 129, 3009-3016.	1.4	22
63	Fusion of Three-Dimensional Echocardiographic Regional Myocardial Strain with Cardiac Computed Tomography for Noninvasive Evaluation of the Hemodynamic Impact of Coronary Stenosis in Patients with Chest Pain. Journal of the American Society of Echocardiography, 2018, 31, 664-673.	2.8	22
64	Myocardial perfusion reserve and global longitudinal strain as potential markers of coronary allograft vasculopathy in late-stage orthotopic heart transplantation. International Journal of Cardiovascular Imaging, 2018, 34, 1607-1617.	1.5	21
65	Ring-like late gadolinium enhancement for predicting ventricular tachyarrhythmias in non-ischaemic dilated cardiomyopathy. European Heart Journal Cardiovascular Imaging, 2021, 22, 1130-1138.	1.2	21
66	30-minute CMR for common clinical indications:ÂaÂSociety for Cardiovascular Magnetic Resonance white paper. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 13.	3.3	21
67	Analysis of myocardial perfusion from vasodilator stress computed tomography: Does improvement in image quality by iterative reconstruction lead to improved diagnostic accuracy?. Journal of Cardiovascular Computed Tomography, 2014, 8, 238-245.	1.3	20
68	Associations of Prolonged QTc in Sickle Cell Disease. PLoS ONE, 2016, 11, e0164526.	2.5	20
69	Non-invasive assessment of the haemodynamic significance of coronary stenosis using fusion of cardiac computed tomography and 3D echocardiography. European Heart Journal Cardiovascular Imaging, 2016, 18, jew147.	1.2	19
70	Regional myocardial strain by cardiac magnetic resonance feature tracking for detection of scar in ischemic heart disease. Magnetic Resonance Imaging, 2020, 68, 190-196.	1.8	19
71	Left and right ventricular strain using fast strain-encoded cardiovascular magnetic resonance for the diagnostic classification of patients with chronic non-ischemic heart failure due to dilated, hypertrophic cardiomyopathy or cardiac amyloidosis. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 45.	3.3	18
72	AI Based CMR Assessment of Biventricular Function. JACC: Cardiovascular Imaging, 2022, 15, 413-427.	5.3	18

#	Article	IF	CITATIONS
73	Cardiac MRI right ventricle / left ventricle (RV/LV) volume ratio improves detection of RV enlargement. Journal of Magnetic Resonance Imaging, 2016, 43, 1379-1385.	3.4	17
74	Prognostic Value of Stress CMR Perfusion Imaging in Patients With Reduced LeftÂVentricular Function. JACC: Cardiovascular Imaging, 2020, 13, 2132-2145.	5.3	17
75	Quantitative Three-Dimensional Evaluation of Myocardial Perfusion During Regadenoson Stress Using Multidetector Computed Tomography. Journal of Computer Assisted Tomography, 2012, 36, 443-449.	0.9	16
76	In situ constructive myocardial remodeling of extracellular matrix patch enhanced with controlled growth factor release. Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 1280-1290.e2.	0.8	16
77	Stress CMR in patients with obesity: insights from the Stress CMR Perfusion Imaging in the United States (SPINS) registry. European Heart Journal Cardiovascular Imaging, 2021, 22, 518-527.	1.2	16
78	Multi-parametric quantification of tricuspid regurgitation using cardiovascular magnetic resonance: A comparison to echocardiography. European Journal of Radiology, 2017, 86, 213-220.	2.6	13
79	Using all-cause mortality to define severe RV dilation with RV/LV volume ratio. Scientific Reports, 2018, 8, 7200.	3.3	13
80	Consequences of Retained Defibrillator and Pacemaker Leads After Heart Transplantation—An Underrecognized Problem. Journal of Cardiac Failure, 2018, 24, 101-108.	1.7	12
81	Three-dimensional analysis of regional right ventricular shape and function in repaired tetralogy of Fallot using cardiovascular magnetic resonance. Clinical Imaging, 2018, 52, 106-112.	1.5	12
82	Genome-Wide Analysis Identifies IL-18 and FUCA2 as Novel Genes Associated with Diastolic Function in African Americans with Sickle Cell Disease. PLoS ONE, 2016, 11, e0163013.	2.5	11
83	Assessment of right ventricular size and function from cardiovascular magnetic resonance images using artificial intelligence. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 27.	3.3	11
84	Dynamic Registration of Preablation Imaging With a Catheter Geometry to Guide Ablation in a Swine Model: Validation of Image Integration and Assessment of Catheter Navigation Accuracy. Journal of Cardiovascular Electrophysiology, 2010, 21, 81-87.	1.7	10
85	Myocardial Perfusion Imaging with Cardiac Computed Tomography: State of the Art. Journal of Cardiovascular Translational Research, 2013, 6, 695-707.	2.4	10
86	Feasibility of Left Ventricular Global Longitudinal Strain Measurements from Contrast-Enhanced Echocardiographic Images. Journal of the American Society of Echocardiography, 2018, 31, 297-303.	2.8	10
87	The role of computed tomography myocardial perfusion imaging in clinical practice. Journal of Cardiovascular Computed Tomography, 2020, 14, 185-194.	1.3	10
88	Machine learning based quantification of ejection and filling parameters by fully automated dynamic measurement of left ventricular volumes from cardiac magnetic resonance images. Magnetic Resonance Imaging, 2020, 67, 28-32.	1.8	10
89	Prognostic Value of Stress Cardiac Magnetic Resonance in Patients With Known Coronary Artery Disease. JACC: Cardiovascular Imaging, 2022, 15, 60-71.	5.3	10
90	Comparison of machine learning and deep learning for view identification from cardiac magnetic resonance images. Clinical Imaging, 2022, 82, 121-126.	1.5	10

#	Article	IF	CITATIONS
91	Synthetic Extracellular Volume in Cardiac Magnetic Resonance Without Blood Sampling: a Reliable Tool to Replace Conventional Extracellular Volume. Circulation: Cardiovascular Imaging, 2022, 15, 101161CIRCIMAGING121013745.	2.6	10
92	Atrioventricular Heart Block and Syncope Coincident With Diagnosis of Systemic Lupus Erythematosus. Canadian Journal of Cardiology, 2013, 29, 1330.e5-1330.e7.	1.7	9
93	Redefining the Role of Cardiovascular Imaging in Patients with Pulmonary Arterial Hypertension. Current Cardiology Reports, 2012, 14, 366-373.	2.9	8
94	Microvascular dysfunction and cardiac fibrosis in heart failure with preserved ejection fraction: a case report. ESC Heart Failure, 2017, 4, 645-648.	3.1	8
95	Cardiac Sarcoidosis: A Picture May Be Worth a Thousand Words, But Do We Need More?. Journal of the American Heart Association, 2019, 8, e012715.	3.7	8
96	Cardiac Magnetic Resonance in Patients With Cardiac Implantable Electronic Devices. Journal of Thoracic Imaging, 2020, 35, W1-W17.	1.5	8
97	Impact of Wideband Late Gadolinium Enhancement Cardiac Magnetic Resonance Imaging on Deviceâ€Related Artifacts in Different Implantable <scp>Cardioverterâ€Defibrillator</scp> Types. Journal of Magnetic Resonance Imaging, 2021, 54, 1257-1265.	3.4	8
98	Cardiac Magnetic Resonance Predicting Outcomes Among Patients at Risk for Cardiac AL Amyloidosis. Frontiers in Cardiovascular Medicine, 2021, 8, 626414.	2.4	8
99	3D late gadolinium enhanced cardiovascular MR with CENTRA-PLUS profile/view ordering: Feasibility of right ventricular myocardial damage assessment using a swine animal model. Magnetic Resonance Imaging, 2017, 39, 7-14.	1.8	7
100	A histopathologic schema to quantify the burden of cardiac amyloidosis: Relationship with survival and echocardiographic parameters. Echocardiography, 2019, 36, 285-291.	0.9	7
101	Are Trabeculae and Papillary Muscles an Integral Part of Cardiac Anatomy. JACC: Cardiovascular Imaging, 2012, 5, 1124-1126.	5.3	5
102	Role of Perfusion at Rest in the Diagnosis of Myocardial Infarction Using Vasodilator Stress Cardiovascular Magnetic Resonance. American Journal of Cardiology, 2016, 117, 1072-1077.	1.6	5
103	Contrast-enhanced echocardiographic measurement of longitudinal strain: accuracy and its relationship with image quality. International Journal of Cardiovascular Imaging, 2020, 36, 431-439.	1.5	5
104	Comparison of clinical and echocardiographic features of first and second waves of COVID-19 at a large, tertiary medical center serving a predominantly African American patient population. International Journal of Cardiovascular Imaging, 2021, 37, 3181-3190.	1.5	5
105	SCMR level II/independent practitioner training guidelines for cardiovascular magnetic resonance: integration of a virtual training environment. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 139.	3.3	5
106	Cardiac Magnetic Resonance of Left Ventricular Trabeculation. Circulation: Cardiovascular Imaging, 2011, 4, 84-86.	2.6	4
107	Postextrasystolic Potentiation in Low-Gradient, Severe Aortic Stenosis: A Poor Man's Stress Echo?. Echocardiography, 2013, 30, E148-E151.	0.9	4
108	Prediction of Prognosis in PulmonaryÂHypertension Using CMR. JACC: Cardiovascular Imaging, 2014, 7, 1218-1220.	5.3	4

#	Article	IF	CITATIONS
109	Large high-density lipoprotein particle number is independently associated with microvascular function in patients with well-controlled low-density lipoprotein concentration: A vasodilator stress magnetic resonance perfusion study. Journal of Clinical Lipidology, 2016, 10, 314-322.	1.5	4
110	Update on Computed Tomography Myocardial Perfusion Imaging. Current Cardiovascular Imaging Reports, 2016, 9, 1.	0.6	4
111	Objective selection of short-axis slices for automated quantification of left ventricular size and function by cardiovascular magnetic resonance. Clinical Imaging, 2016, 40, 617-623.	1.5	4
112	Three-dimensional quantification of myocardial perfusion during regadenoson stress computed tomography. European Journal of Radiology, 2016, 85, 885-892.	2.6	4
113	Detection of Cardiac Sarcoidosis. JACC: Cardiovascular Imaging, 2017, 10, 1448-1450.	5.3	4
114	Healthcare Policy Statement on the Utility of Coronary Computed Tomography for Evaluation of Cardiovascular Conditions and Preventive Healthcare: From the Health Policy Working Group of the Society of Cardiovascular Computed Tomography. Journal of Cardiovascular Computed Tomography, 2017, 11, 404-414.	1.3	4
115	A fast, noniterative approach for accelerated high-temporal resolution cine-CMR using dynamically interleaved streak removal in the power-spectral encoded domain with low-pass filtering (DISPEL) and modulo-prime spokes (MoPS). Medical Physics, 2017, 44, 3450-3463.	3.0	4
116	Hemodynamic impact of coronary stenosis using computed tomography: comparison between noninvasive fractional flow reserve and 3D fusion of coronary angiography with stress myocardial perfusion. International Journal of Cardiovascular Imaging, 2019, 35, 1733-1743.	1.5	4
117	Improved visualization of the coronary arteries using motion correction during vasodilator stress CT myocardial perfusion imaging. European Journal of Radiology, 2019, 114, 1-5.	2.6	4
118	Cardiac Sarcoidosis. JACC: Cardiovascular Imaging, 2020, 13, 1406-1408.	5.3	4
119	Computerized method for evaluating diagnostic image quality of calcified plaque images in cardiac CT: Validation on a physical dynamic cardiac phantom. Medical Physics, 2010, 37, 5777-5786.	3.0	3
120	Can echocardiographic assessment of diastolic function be automated?. International Journal of Cardiovascular Imaging, 2022, 38, 965-974.	1.5	3
121	Regadenoson cardiovascular magnetic resonance myocardial perfusion imaging predicts need for future revascularization. Journal of Cardiovascular Magnetic Resonance, 2012, 14, .	3.3	2
122	Aortic annulus measurements: should we use multislice computed tomography, 3D echocardiography or MRI?. Expert Review of Cardiovascular Therapy, 2013, 11, 1-3.	1.5	2
123	Beyond right ventricular size and function: the importance of evaluating the right ventricle's capacity for recovery. Expert Review of Cardiovascular Therapy, 2014, 12, 1269-1273.	1.5	2
124	Heart Failure With Preserved Ejection Fraction. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	2
125	The extracellular matrix patch implanted in the right ventricle evaluated with cardiovascular magnetic resonance protocol to assess regional physio-mechanical properties. Interactive Cardiovascular and Thoracic Surgery, 2017, 24, 82-89.	1.1	2
126	Quantitative detection of changes in regional wall motion using real time strain-encoded cardiovascular magnetic resonance. Magnetic Resonance Imaging, 2020, 66, 193-198.	1.8	2

#	Article	IF	CITATIONS
127	Myocardial Tissue Characterization With CMR for the Definitive Diagnosis of Infiltrative Cardiomyopathies. JACC: Cardiovascular Imaging, 2020, 13, 156-162.	5.3	2
128	Massive Myocardial Calcium Deposition. JACC: Case Reports, 2020, 2, 996-1003.	0.6	2
129	Utility of transillumination and transparency renderings in 3D transthoracic imaging. International Journal of Cardiovascular Imaging, 2022, 38, 141-147.	1.5	2
130	Clinical Impact of Cardiovascular Magnetic Resonance in Cancer Patients With Suspected Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2021, 8, 734820.	2.4	2
131	Relation of Myocardial Perfusion Reserve and Left Ventricular Ejection Fraction in Ischemic and Nonischemic Cardiomyopathy. American Journal of Cardiology, 2022, 174, 143-150.	1.6	2
132	Abnormalities in aortic properties: a potential link between left ventricular diastolic function and ventricular—aortic coupling in sickle cell disease. International Journal of Cardiovascular Imaging, 2016, 32, 965-973.	1.5	1
133	Monitoring Ionizing Radiation Exposure for Cardiotoxic Effects of Breast Cancer Treatment. American Journal of Cardiology, 2016, 117, 1678-1682.	1.6	1
134	A novel profile/view ordering with a non-convex star shutter for high-resolution 3D volumetric T1 mapping under multiple breath-holds. Magnetic Resonance in Medicine, 2017, 77, 2215-2224.	3.0	1
135	Evaluating Chest Pain in Patients with Known CAD. , 0, , 96-110.		Ο
136	Cor Pulmonale. , 2011, , 1355-1376.		0
137	Assessing Cardiovascular Risk in Women. Journal of the American College of Cardiology, 2013, 62, 1877-1879.	2.8	0
138	Left ventricular-aortic coupling in sickle cell disease underlies diastolic dysfunction. , 2015, , .		0
139	Unroofed coronary sinus atrial septal defect: a multi-modality imaging approach:. European Heart Journal Cardiovascular Imaging, 2015, 16, 1263-1263.	1.2	Ο
140	Diagnostic usefulness of myocardial perfusion imaging in patients reluctant to undergo angiography. Research Reports in Clinical Cardiology, 2016, , 35.	0.2	0
141	Noninvasive Assessment of Coronary Anatomy and its Hemodynamic Consequences During a Single Test. JACC: Cardiovascular Imaging, 2018, 11, 1622-1624.	5.3	Ο
142	Regression of Cardiac Amyloidosis Following Autologous Stem Cell Transplant in Patients With Atypical Magnetic Resonance Imaging Findings. Revista Espanola De Cardiologia (English Ed), 2019, 72, 790-792.	0.6	0
143	Diagnosing Endocarditis: Get the Picture?!. Journal of Cardiothoracic and Vascular Anesthesia, 2022, 36, 358-361.	1.3	0
144	TAVR: We need the RIGHT focus. Journal of Cardiovascular Computed Tomography, 2022, 16, 166-167.	1.3	0

#	Article	IF	CITATIONS
145	Rare Variant of Shone Complex. Circulation: Cardiovascular Imaging, 2021, 14, e012317.	2.6	0