Raphael Scharfmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1253971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of Human Beta Cell Identity in a Reconstructed Omental Stromal Cell Environment. Cells, 2022, 11, 924.	4.1	1
2	Characterization of the Secretome, Transcriptome, and Proteome of Human β Cell Line EndoC-βH1. Molecular and Cellular Proteomics, 2022, 21, 100229.	3.8	3
3	Proprotein convertase PCSK9 affects expression of key surface proteins in human pancreatic beta cells via intracellular and extracellular regulatory circuits. Journal of Biological Chemistry, 2022, 298, 102096.	3.4	6
4	Peptidylarginine Deiminase Inhibition Prevents Diabetes Development in NOD Mice. Diabetes, 2021, 70, 516-528.	0.6	25
5	Pancreatic endocrinogenesis revisited: "I have all the answers, who has the questions?― Cell Research, 2021, 31, 834-835.	12.0	0
6	Glucose treatment of human pancreatic β-cells enhances translation of mRNAs involved in energetics and insulin secretion. Journal of Biological Chemistry, 2021, 297, 100839.	3.4	6
7	Stearoyl CoA desaturase is a gatekeeper that protects human beta cells against lipotoxicity and maintains their identity. Diabetologia, 2020, 63, 395-409.	6.3	37
8	Purification of pancreatic endocrine subsets reveals increased iron metabolism in beta cells. Molecular Metabolism, 2020, 42, 101060.	6.5	30
9	Regulated expression and function of the GABAB receptor in human pancreatic beta cell line and islets. Scientific Reports, 2020, 10, 13469.	3.3	22
10	Transcription factors that shape the mammalian pancreas. Diabetologia, 2020, 63, 1974-1980.	6.3	39
11	Long-term Metabolic and Socioeducational Outcomes of Transient Neonatal Diabetes: A Longitudinal and Cross-sectional Study. Diabetes Care, 2020, 43, 1191-1199.	8.6	5
12	Bromodomain and Extra Terminal Proteins Inhibitors Promote Pancreatic Endocrine Cell Fate. Diabetes, 2019, 68, db180224.	0.6	13
13	Comparison of Human and Murine Enteroendocrine Cells by Transcriptomic and Peptidomic Profiling. Diabetes, 2019, 68, 1062-1072.	0.6	100
14	The supply chain of human pancreatic β cell lines. Journal of Clinical Investigation, 2019, 129, 3511-3520.	8.2	35
15	Modeling human pancreatic beta cell dedifferentiation. Molecular Metabolism, 2018, 10, 74-86.	6.5	65
16	MondoA Is an Essential Glucose-Responsive Transcription Factor in Human Pancreatic β-Cells. Diabetes, 2018, 67, 461-472.	0.6	36
17	Mitochondrial Protein UCP2 Controls Pancreas Development. Diabetes, 2018, 67, 78-84.	0.6	30
18	Conventional and Neo-antigenic Peptides Presented by β Cells Are Targeted by Circulating NaÃ⁻ve CD8+ T Cells in Type 1 Diabetic and Healthy Donors. Cell Metabolism, 2018, 28, 946-960.e6.	16.2	177

RAPHAEL SCHARFMANN

#	Article	IF	CITATIONS
19	Understanding human fetal pancreas development using subpopulation sorting, RNA sequencing and single-cell profiling. Development (Cambridge), 2018, 145, .	2.5	78
20	Virus-like infection induces human \hat{I}^2 cell dedifferentiation. JCI Insight, 2018, 3, .	5.0	53
21	Efficient Generation of Glucose-Responsive Beta Cells from Isolated GP2 + Human Pancreatic Progenitors. Cell Reports, 2017, 19, 36-49.	6.4	100
22	Reconstructing human pancreatic differentiation by mapping specific cell populations during development. ELife, 2017, 6, .	6.0	45
23	Extracellular acidification stimulates GPR68 mediated IL-8 production in human pancreatic \hat{l}^2 cells. Scientific Reports, 2016, 6, 25765.	3.3	22
24	Aggregation of Engineered Human β-Cells into Pseudoislets: Insulin Secretion and Gene Expression Profile in Normoxic and Hypoxic Milieu. Cell Medicine, 2016, 8, 99-112.	5.0	19
25	Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function. Cell Metabolism, 2016, 23, 909-920.	16.2	205
26	Systematic Functional Characterization of Candidate Causal Genes for Type 2 Diabetes Risk Variants. Diabetes, 2016, 65, 3805-3811.	0.6	79
27	Mass production of functional human pancreatic βâ€cells: why and how?. Diabetes, Obesity and Metabolism, 2016, 18, 128-136.	4.4	27
28	Innate and adaptive immunity to human beta cell lines: implications for beta cell therapy. Diabetologia, 2016, 59, 170-175.	6.3	19
29	Xenotropic retrovirus Bxv1 in human pancreatic β cell lines. Journal of Clinical Investigation, 2016, 126, 1109-1113.	8.2	20
30	Characterization of Stimulus-Secretion Coupling in the Human Pancreatic EndoC-Î ² H1 Beta Cell Line. PLoS ONE, 2015, 10, e0120879.	2.5	54
31	Role of the AMP kinase in cytokine-induced human EndoC-βH1 cell death. Molecular and Cellular Endocrinology, 2015, 414, 53-63.	3.2	20
32	Ex Vivo Expansion and Differentiation of Human and Mouse Fetal Pancreatic Progenitors Are Modulated by Epidermal Growth Factor. Stem Cells and Development, 2015, 24, 1766-1778.	2.1	41
33	Sulfonylurea Therapy Benefits Neurological and Psychomotor Functions in Patients With Neonatal Diabetes Owing to Potassium Channel Mutations. Diabetes Care, 2015, 38, 2033-2041.	8.6	75
34	RFX6 Regulates Insulin Secretion by Modulating Ca2+ Homeostasis in Human β Cells. Cell Reports, 2014, 9, 2206-2218.	6.4	73
35	Human Pancreas Endocrine Cell Populations and Activating <i>ABCC8</i> Mutations. Hormone Research in Paediatrics, 2014, 82, 59-64.	1.8	11
36	Pro-oxidant/antioxidant balance controls pancreatic β-cell differentiation through the ERK1/2 pathway. Cell Death and Disease, 2014, 5, e1487-e1487.	6.3	29

RAPHAEL SCHARFMANN

#	Article	IF	CITATIONS
37	Development of a conditionally immortalized human pancreatic Î ² cell line. Journal of Clinical Investigation, 2014, 124, 2087-2098.	8.2	165
38	Neuropsychological dysfunction and developmental defects associated with genetic changes in infants with neonatal diabetes mellitus: a prospective cohort study. Lancet Diabetes and Endocrinology,the, 2013, 1, 199-207.	11.4	87
39	Concise Review: In Search of Unlimited Sources of Functional Human Pancreatic Beta Cells. Stem Cells Translational Medicine, 2013, 2, 61-67.	3.3	21
40	Mouse Muscle As an Ectopic Permissive Site for Human Pancreatic Development. Diabetes, 2013, 62, 3479-3487.	0.6	19
41	Disruption of a Novel Krüppel-like Transcription Factor p300-regulated Pathway for Insulin Biosynthesis Revealed by Studies of the c331 INS Mutation Found in Neonatal Diabetes Mellitus. Journal of Biological Chemistry, 2011, 286, 28414-28424.	3.4	72
42	A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. Journal of Clinical Investigation, 2011, 121, 3589-3597.	8.2	484
43	Histone Deacetylase Inhibitors Modify Pancreatic Cell Fate Determination and Amplify Endocrine Progenitors. Molecular and Cellular Biology, 2008, 28, 6373-6383.	2.3	167
44	Glucose Is Necessary for Embryonic Pancreatic Endocrine Cell Differentiation. Journal of Biological Chemistry, 2007, 282, 15228-15237.	3.4	61
45	Control of Â-Cell Differentiation by the Pancreatic Mesenchyme. Diabetes, 2007, 56, 1248-1258.	0.6	96
46	Activating Mutations in the <i>ABCC8</i> Gene in Neonatal Diabetes Mellitus. New England Journal of Medicine, 2006, 355, 456-466.	27.0	591
47	The Mesenchyme Controls the Timing of Pancreatic β-Cell Differentiation. Diabetes, 2006, 55, 582-589.	0.6	101
48	Efficient restricted gene expression in beta cells by lentivirus-mediated gene transfer into pancreatic stem/progenitor cells. Diabetologia, 2005, 48, 709-719.	6.3	38
49	Label-Retaining Cells in the Rat Pancreas: Location and Differentiation Potential in Vitro. Diabetes, 2003, 52, 2035-2042.	0.6	79
50	Blood glucose normalization upon transplantation of human embryonic pancreas into beta-cell-deficient SCID mice. Diabetologia, 2001, 44, 2066-2076.	6.3	81
51	<i>Fgf10</i> is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development (Cambridge), 2001, 128, 5109-5117.	2.5	394
52	Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development (Cambridge), 2001, 128, 5109-17.	2.5	178
53	Early pattern of differentiation in the human pancreas. Diabetes, 2000, 49, 225-232.	0.6	182
54	Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6267-6272.	7.1	162