Raphael Scharfmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1253971/publications.pdf

Version: 2024-02-01

54 papers

4,582 citations

30 h-index 53 g-index

59 all docs

59 docs citations

59 times ranked

5463 citing authors

#	Article	IF	CITATIONS
1	Activating Mutations in the <i> ABCC8 < /i > Gene in Neonatal Diabetes Mellitus. New England Journal of Medicine, 2006, 355, 456-466.</i>	27.0	591
2	A genetically engineered human pancreatic \hat{l}^2 cell line exhibiting glucose-inducible insulin secretion. Journal of Clinical Investigation, 2011, 121, 3589-3597.	8.2	484
3	<i>Fgf10 $<$ i>is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development (Cambridge), 2001, 128, 5109-5117.	2.5	394
4	Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human \hat{l}^2 Cell Function. Cell Metabolism, 2016, 23, 909-920.	16.2	205
5	Early pattern of differentiation in the human pancreas. Diabetes, 2000, 49, 225-232.	0.6	182
6	Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development (Cambridge), 2001, 128, 5109-17.	2.5	178
7	Conventional and Neo-antigenic Peptides Presented by \hat{l}^2 Cells Are Targeted by Circulating Na \tilde{A}^- ve CD8+ T Cells in Type 1 Diabetic and Healthy Donors. Cell Metabolism, 2018, 28, 946-960.e6.	16.2	177
8	Histone Deacetylase Inhibitors Modify Pancreatic Cell Fate Determination and Amplify Endocrine Progenitors. Molecular and Cellular Biology, 2008, 28, 6373-6383.	2.3	167
9	Development of a conditionally immortalized human pancreatic \hat{l}^2 cell line. Journal of Clinical Investigation, 2014, 124, 2087-2098.	8.2	165
10	Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6267-6272.	7.1	162
11	The Mesenchyme Controls the Timing of Pancreatic \hat{l}^2 -Cell Differentiation. Diabetes, 2006, 55, 582-589.	0.6	101
12	Efficient Generation of Glucose-Responsive Beta Cells from Isolated GP2 + Human Pancreatic Progenitors. Cell Reports, 2017, 19, 36-49.	6.4	100
13	Comparison of Human and Murine Enteroendocrine Cells by Transcriptomic and Peptidomic Profiling. Diabetes, 2019, 68, 1062-1072.	0.6	100
14	Control of Â-Cell Differentiation by the Pancreatic Mesenchyme. Diabetes, 2007, 56, 1248-1258.	0.6	96
15	Neuropsychological dysfunction and developmental defects associated with genetic changes in infants with neonatal diabetes mellitus: a prospective cohort study. Lancet Diabetes and Endocrinology,the, 2013, 1, 199-207.	11.4	87
16	Blood glucose normalization upon transplantation of human embryonic pancreas into beta-cell-deficient SCID mice. Diabetologia, 2001, 44, 2066-2076.	6.3	81
17	Label-Retaining Cells in the Rat Pancreas: Location and Differentiation Potential in Vitro. Diabetes, 2003, 52, 2035-2042.	0.6	79
18	Systematic Functional Characterization of Candidate Causal Genes for Type 2 Diabetes Risk Variants. Diabetes, 2016, 65, 3805-3811.	0.6	79

#	Article	IF	Citations
19	Understanding human fetal pancreas development using subpopulation sorting, RNA sequencing and single-cell profiling. Development (Cambridge), 2018, 145, .	2.5	78
20	Sulfonylurea Therapy Benefits Neurological and Psychomotor Functions in Patients With Neonatal Diabetes Owing to Potassium Channel Mutations. Diabetes Care, 2015, 38, 2033-2041.	8.6	75
21	RFX6 Regulates Insulin Secretion by Modulating Ca2+ Homeostasis in Human \hat{l}^2 Cells. Cell Reports, 2014, 9, 2206-2218.	6.4	73
22	Disruption of a Novel Krýppel-like Transcription Factor p300-regulated Pathway for Insulin Biosynthesis Revealed by Studies of the c331 INS Mutation Found in Neonatal Diabetes Mellitus. Journal of Biological Chemistry, 2011, 286, 28414-28424.	3.4	72
23	Modeling human pancreatic beta cell dedifferentiation. Molecular Metabolism, 2018, 10, 74-86.	6.5	65
24	Glucose Is Necessary for Embryonic Pancreatic Endocrine Cell Differentiation. Journal of Biological Chemistry, 2007, 282, 15228-15237.	3.4	61
25	Characterization of Stimulus-Secretion Coupling in the Human Pancreatic EndoC-Î ² H1 Beta Cell Line. PLoS ONE, 2015, 10, e0120879.	2.5	54
26	Virus-like infection induces human \hat{l}^2 cell dedifferentiation. JCI Insight, 2018, 3, .	5.0	53
27	Reconstructing human pancreatic differentiation by mapping specific cell populations during development. ELife, 2017, 6, .	6.0	45
28	Ex Vivo Expansion and Differentiation of Human and Mouse Fetal Pancreatic Progenitors Are Modulated by Epidermal Growth Factor. Stem Cells and Development, 2015, 24, 1766-1778.	2.1	41
29	Transcription factors that shape the mammalian pancreas. Diabetologia, 2020, 63, 1974-1980.	6.3	39
30	Efficient restricted gene expression in beta cells by lentivirus-mediated gene transfer into pancreatic stem/progenitor cells. Diabetologia, 2005, 48, 709-719.	6.3	38
31	Stearoyl CoA desaturase is a gatekeeper that protects human beta cells against lipotoxicity and maintains their identity. Diabetologia, 2020, 63, 395-409.	6.3	37
32	MondoA Is an Essential Glucose-Responsive Transcription Factor in Human Pancreatic \hat{l}^2 -Cells. Diabetes, 2018, 67, 461-472.	0.6	36
33	The supply chain of human pancreatic \hat{l}^2 cell lines. Journal of Clinical Investigation, 2019, 129, 3511-3520.	8.2	35
34	Mitochondrial Protein UCP2 Controls Pancreas Development. Diabetes, 2018, 67, 78-84.	0.6	30
35	Purification of pancreatic endocrine subsets reveals increased iron metabolism in beta cells. Molecular Metabolism, 2020, 42, 101060.	6.5	30
36	Pro-oxidant/antioxidant balance controls pancreatic \hat{l}^2 -cell differentiation through the ERK1/2 pathway. Cell Death and Disease, 2014, 5, e1487-e1487.	6.3	29

#	Article	IF	CITATIONS
37	Mass production of functional human pancreatic $\hat{l}^2\hat{a}\in ells$: why and how?. Diabetes, Obesity and Metabolism, 2016, 18, 128-136.	4.4	27
38	Peptidylarginine Deiminase Inhibition Prevents Diabetes Development in NOD Mice. Diabetes, 2021, 70, 516-528.	0.6	25
39	Extracellular acidification stimulates GPR68 mediated IL-8 production in human pancreatic \hat{l}^2 cells. Scientific Reports, 2016, 6, 25765.	3.3	22
40	Regulated expression and function of the GABAB receptor in human pancreatic beta cell line and islets. Scientific Reports, 2020, 10, 13469.	3.3	22
41	Concise Review: In Search of Unlimited Sources of Functional Human Pancreatic Beta Cells. Stem Cells Translational Medicine, 2013, 2, 61-67.	3.3	21
42	Role of the AMP kinase in cytokine-induced human EndoC-Î ² H1 cell death. Molecular and Cellular Endocrinology, 2015, 414, 53-63.	3.2	20
43	Xenotropic retrovirus Bxv1 in human pancreatic \hat{l}^2 cell lines. Journal of Clinical Investigation, 2016, 126, 1109-1113.	8.2	20
44	Mouse Muscle As an Ectopic Permissive Site for Human Pancreatic Development. Diabetes, 2013, 62, 3479-3487.	0.6	19
45	Aggregation of Engineered Human \hat{I}^2 -Cells into Pseudoislets: Insulin Secretion and Gene Expression Profile in Normoxic and Hypoxic Milieu. Cell Medicine, 2016, 8, 99-112.	5.0	19
46	Innate and adaptive immunity to human beta cell lines: implications for beta cell therapy. Diabetologia, 2016, 59, 170-175.	6.3	19
47	Bromodomain and Extra Terminal Proteins Inhibitors Promote Pancreatic Endocrine Cell Fate. Diabetes, 2019, 68, db180224.	0.6	13
48	Human Pancreas Endocrine Cell Populations and Activating <i>ABCC8</i> Mutations. Hormone Research in Paediatrics, 2014, 82, 59-64.	1.8	11
49	Glucose treatment of human pancreatic \hat{l}^2 -cells enhances translation of mRNAs involved in energetics and insulin secretion. Journal of Biological Chemistry, 2021, 297, 100839.	3.4	6
50	Proprotein convertase PCSK9 affects expression of key surface proteins in human pancreatic beta cells via intracellular and extracellular regulatory circuits. Journal of Biological Chemistry, 2022, 298, 102096.	3.4	6
51	Long-term Metabolic and Socioeducational Outcomes of Transient Neonatal Diabetes: A Longitudinal and Cross-sectional Study. Diabetes Care, 2020, 43, 1191-1199.	8.6	5
52	Characterization of the Secretome, Transcriptome, and Proteome of Human Î ² Cell Line EndoC-Î ² H1. Molecular and Cellular Proteomics, 2022, 21, 100229.	3.8	3
53	Loss of Human Beta Cell Identity in a Reconstructed Omental Stromal Cell Environment. Cells, 2022, 11, 924.	4.1	1
54	Pancreatic endocrinogenesis revisited: "l have all the answers, who has the questions?― Cell Research, 2021, 31, 834-835.	12.0	0