Do Hyun Ryu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1252093/publications.pdf

Version: 2024-02-01

93 papers

3,308 citations

147801 31 h-index 54 g-index

102 all docs

 $\begin{array}{c} 102 \\ \\ \text{docs citations} \end{array}$

102 times ranked

3383 citing authors

#	Article	IF	CITATIONS
1	Enantioselective Friedel–Crafts Alkylation of Furans with <i>>o</i> >-Quinone Methide Using a Chiral Oxazaborolidinium Ion Catalyst. Organic Letters, 2022, 24, 1732-1736.	4.6	10
2	Integrated metagenomics and metabolomics analysis illustrates the systemic impact of the gut microbiota on host metabolism after bariatric surgery. Diabetes, Obesity and Metabolism, 2022, 24, 1224-1234.	4.4	9
3	Comparable Plasma Lipid Changes in Patients with High-Grade Cervical Intraepithelial Neoplasia and Patients with Cervical Cancer. Journal of Proteome Research, 2021, 20, 740-750.	3.7	13
4	Kinetic Resolution and Dynamic Kinetic Resolution of γâ€Arylâ€Substituted Butenolides via Copperâ€Catalyzed 1,4â€Hydroboration. Advanced Synthesis and Catalysis, 2021, 363, 2377-2381.	4.3	2
5	Enantioselective Cyclopropanation/[1,5]-Hydrogen Shift to Access Rauhut–Currier Product. Organic Letters, 2021, 23, 213-217.	4.6	8
6	Design and Synthesis of 5â€Aryl â€substituted Phenylpyrimidineâ€2,4â€diamine Derivatives as Novel Mer and Tyro3 Kinase Inhibitors. Bulletin of the Korean Chemical Society, 2021, 42, 206-211.	1.9	3
7	Asymmetric Synthesis of (â^)â€Dictyopterene C' and its Derivatives via Catalytic Enantioselective Cyclopropanation. Bulletin of the Korean Chemical Society, 2021, 42, 675-678.	1.9	7
8	Enantioselective Acyloin Rearrangement of Acyclic Aldehydes Catalyzed by Chiral Oxazaborolidinium lon. Organic Letters, 2021, 23, 1516-1520.	4.6	6
9	Bifunctional Urea/Hg(OAc) ₂ -Mediated Synthesis of 4-Aryl-6-oxycarbonyl-2-pyrones and 2-Pyridones from Dithiomalonate and β,γ-Unsaturated α-Keto Esters. Journal of Organic Chemistry, 2021, 86, 6001-6014.	3.2	10
10	A Mild Method for Access to αâ€Substituted Dithiomalonates through Câ€Thiocarbonylation of Thioester: Synthesis of Mesoionic Insecticides. Advanced Synthesis and Catalysis, 2021, 363, 3201-3206.	4.3	7
11	Catalytic Asymmetric Darzensâ€Type Epoxidation of Diazoesters: Highly Enantioselective Synthesis of Trisubstituted Epoxides. Angewandte Chemie, 2021, 133, 22410-22414.	2.0	0
12	Catalytic Asymmetric Darzensâ€Type Epoxidation of Diazoesters: Highly Enantioselective Synthesis of Trisubstituted Epoxides. Angewandte Chemie - International Edition, 2021, 60, 22236-22240.	13.8	11
13	Ternary Electron Donor–Acceptor Complex Enabled Enantioselective Radical Additions to α, β-Unsaturated Carbonyl Compounds. ACS Catalysis, 2021, 11, 14811-14818.	11.2	14
14	Enantioselective 1,2-Addition of \hat{l}_{\pm} -Aminoalkyl Radical to Aldehydes via Visible-Light Photoredox Initiated Chiral Oxazaborolidinium Ion Catalysis. ACS Catalysis, 2020, 10, 10585-10591.	11.2	24
15	Urinary Metabolomic Profiling Analysis and Evaluation of the Effect of Ecklonia cava Extract Intake. Nutrients, 2020, 12, 1407.	4.1	6
16	Highly Enantioselective Allylation Reactions of Aldehydes with Allyltrimethylsilane Catalyzed by a Chiral Oxazaborolidinium Ion. Organic Letters, 2020, 22, 5198-5201.	4.6	5
17	Enantioselective Strecker and Allylation Reactions with Aldimines Catalyzed by Chiral Oxazaborolidinium Ions. Organic Letters, 2019, 21, 6679-6683.	4.6	14
18	Enantioselective Carbonyl 1,2- or 1,4-Addition Reactions of Nucleophilic Silyl and Diazo Compounds Catalyzed by the Chiral Oxazaborolidinium Ion. Accounts of Chemical Research, 2019, 52, 2349-2360.	15.6	51

#	Article	IF	CITATIONS
19	Asymmetric Synthesis of Enantioenriched 2â€Arylâ€⊋,3â€Dihydrobenzofurans by a Lewis Acid Catalyzed Cyclopropanation/Intramolecular Rearrangement Sequence. Angewandte Chemie - International Edition, 2019, 58, 13427-13432.	13.8	38
20	Asymmetric Synthesis of Enantioenriched 2â€Arylâ€2,3â€Dihydrobenzofurans by a Lewis Acid Catalyzed Cyclopropanation/Intramolecular Rearrangement Sequence. Angewandte Chemie, 2019, 131, 13561-13566.	2.0	10
21	Total synthesis of PGF2α and 6,15-diketo-PGF1α and formal synthesis of 6-keto-PGF1α via three-component coupling. Tetrahedron, 2019, 75, 130593.	1.9	5
22	Multicomponent dipolar cycloadditions: efficient synthesis of polycyclic fused pyrrolizidinesviaazomethine ylides. Organic and Biomolecular Chemistry, 2019, 17, 1773-1777.	2.8	16
23	Bioinspired Synthesis of Chiral 3,4-Dihydropyranones via S-to-O Acyl-Transfer Reactions. Organic Letters, 2018, 20, 1584-1588.	4.6	24
24	Stable Palladium Hydride Catalyzed Intermolecular Hydroamination of Vinylarenes. Asian Journal of Organic Chemistry, 2018, 7, 451-457.	2.7	8
25	Metabolic phenotyping of human atherosclerotic plaques: Metabolic alterations and their biological relevance in plaque-containing aorta. Atherosclerosis, 2018, 269, 21-28.	0.8	21
26	Kinetic Resolution of \hat{l}^2 -Hydroxy Carbonyl Compounds via Enantioselective Dehydration Using a Cation-Binding Catalyst: Facile Access to Enantiopure Chiral Aldols. Organic Letters, 2018, 20, 2003-2006.	4.6	16
27	Effect of green tea on hepatic lipid metabolism in mice fed a high-fat diet. Journal of Nutritional Biochemistry, 2018, 51, 1-7.	4.2	39
28	Metabolic alterations in the bone tissues of aged osteoporotic mice. Scientific Reports, 2018, 8, 8127.	3.3	17
29	Gold-catalyzed [5+2] cycloaddition of quinolinium zwitterions and allenamides as an efficient route to fused 1,4-diazepines. Chemical Communications, 2018, 54, 6911-6914.	4.1	34
30	Asymmetric Synthesis of Cyclobutanone via Lewis Acid Catalyzed Tandem Cyclopropanation/Semipinacol Rearrangement. Journal of the American Chemical Society, 2018, 140, 11184-11188.	13.7	63
31	Design and Synthesis of Novel 3-(2-Aminopyridin-3-yl)-1,2,4-Triazolo[4,3-b]Pyridazine Derivatives as a Reversible Bruton's Tyrosine Kinase Inhibitors. Bulletin of the Korean Chemical Society, 2018, 39, 853-857.	1.9	6
32	Design and Synthesis of Novel Pyrazolo[3,4â€ <i>d</i>]pyrimidinâ€1â€yl piperidine Derivatives as Bruton's Tyrosine Kinase Inhibitors. Bulletin of the Korean Chemical Society, 2017, 38, 278-281.	1.9	5
33	Catalytic Enantioselective Protonation/Nucleophilic Addition of Diazoesters with Chiral Oxazaborolidinium Ion Activated Carboxylic Acids. Angewandte Chemie - International Edition, 2017, 56, 3977-3981.	13.8	22
34	Catalytic Enantioselective Protonation/Nucleophilic Addition of Diazoesters with Chiral Oxazaborolidinium Ion Activated Carboxylic Acids. Angewandte Chemie, 2017, 129, 4035-4039.	2.0	8
35	Catalytic Enantioselective Synthesis of 2,5â€Dihydrooxepines. Angewandte Chemie, 2017, 129, 8789-8792.	2.0	12
36	Catalytic Enantioselective Synthesis of 2,5â€Dihydrooxepines. Angewandte Chemie - International Edition, 2017, 56, 8663-8666.	13.8	29

#	Article	IF	CITATIONS
37	Role of Configuration at C6 in Catalytic Activity of <scp>l</scp> -Proline-Derived Bifunctional Organocatalysts. Organic Letters, 2017, 19, 2434-2437.	4.6	18
38	Titelbild: Catalytic Enantioselective Synthesis of 2,5â€Dihydrooxepines (Angew. Chem. 30/2017). Angewandte Chemie, 2017, 129, 8709-8709.	2.0	0
39	Construction of 3,4â€Dihydrocoumarin Derivatives with Adjacent Quaternary and Tertiary Stereocenters: Organocatalytic Asymmetric Michael Addition of 2â€Oxochromanâ€3â€carboxylate Esters to <i>trans</i> â€xi>l²â€Nitroolefins. Advanced Synthesis and Catalysis, 2017, 359, 163-167.	4.3	12
40	Catalytic Asymmetric Roskamp Reaction of Silyl Diazoalkane: Synthesis of Enantioenriched α-Silyl Ketone. Organic Letters, 2017, 19, 5936-5939.	4.6	21
41	Myocardial metabolic alterations in mice with diet-induced atherosclerosis: linking sulfur amino acid and lipid metabolism. Scientific Reports, 2017, 7, 13597.	3.3	22
42	Planar D–Dâ^Ï€-A Organic Sensitizers for Thin-Film Photoanodes. ACS Energy Letters, 2017, 2, 1810-1817.	17.4	34
43	Highly Enantioselective Hydrosilylation of Ketones Catalyzed by a Chiral Oxazaborolidinium Ion. Organic Letters, 2017, 19, 6316-6319.	4.6	28
44	Copper-Catalyzed Asymmetric Borylallylation of Vinyl Arenes. Organic Letters, 2017, 19, 6144-6147.	4.6	48
45	A metabolomics-driven approach reveals metabolic responses and mechanisms in the rat heart following myocardial infarction. International Journal of Cardiology, 2017, 227, 239-246.	1.7	21
46	Changes in serum metabolites with the stage of chronic kidney disease: Comparison of diabetes and non-diabetes. Clinica Chimica Acta, 2016, 459, 123-131.	1.1	28
47	Indolineâ€Based Molecular Engineering for Optimizing the Performance of Photoactive Thin Films. Advanced Functional Materials, 2016, 26, 6876-6887.	14.9	18
48	Caloric restriction of db/db mice reverts hepatic steatosis and body weight with divergent hepatic metabolism. Scientific Reports, 2016, 6, 30111.	3.3	78
49	Changes in one-carbon metabolism after duodenal-jejunal bypass surgery. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E624-E632.	3.5	10
50	Discovery of substituted pyrazol-4-yl pyridazinone derivatives as novel c-Met kinase inhibitors. Archives of Pharmacal Research, 2016, 39, 453-464.	6.3	9
51	<scp> </scp> -Proline Derived Bifunctional Organocatalysts: Enantioselective Michael Addition of Dithiomalonates to <i>trans</i> -β-Nitroolefins. Journal of Organic Chemistry, 2016, 81, 3263-3274.	3.2	35
52	Enantioselective Cyclopropanation with \hat{l} ±-Alkyl- \hat{l} ±-diazoesters Catalyzed by Chiral Oxazaborolidinium Ion: Total Synthesis of (+)-Hamavellone B. Organic Letters, 2016, 18, 160-163.	4.6	51
53	Integrated omics-analysis reveals Wnt-mediated NAD+ metabolic reprogramming in cancer stem-like cells. Oncotarget, 2016, 7, 48562-48576.	1.8	8
54	Lipidomic Profiling of Liver Tissue from Obesity-Prone and Obesity-Resistant Mice Fed a High Fat Diet. Scientific Reports, 2015, 5, 16984.	3.3	58

#	Article	IF	CITATIONS
55	Highly enantioselective catalytic 1,3-dipolar cycloadditions of α-alkyl diazoacetates: efficient synthesis of functionalized 2-pyrazolines. Organic and Biomolecular Chemistry, 2015, 13, 2745-2749.	2.8	23
56	Catalytic Asymmetric Formal Insertion of Aryldiazoalkanes into the C–H Bond of Aldehydes: Synthesis of Enantioenriched Acyclic α-Tertiary Aryl Ketones. Organic Letters, 2015, 17, 4810-4813.	4.6	42
57	Enantioselective Synthesis of <i>syn</i> -α-Aryl-β-hydroxy Weinreb Amides: Catalytic Asymmetric Roskamp Reaction of α-Aryl Diazo Weinreb Amides. Organic Letters, 2015, 17, 4746-4749.	4.6	31
58	LC/MS-based polar metabolite profiling reveals gender differences in serum from patients with myocardial infarction. Journal of Pharmaceutical and Biomedical Analysis, 2015, 115, 475-486.	2.8	15
59	1H NMR-Based Metabolite Profiling of Plasma in a Rat Model of Chronic Kidney Disease. PLoS ONE, 2014, 9, e85445.	2.5	32
60	Highly Stereoselective Oxazaborolidinium Ion Catalyzed Synthesis of (Z)-Silyl Enol Ethers from Alkyl Aryl Ketones and Trimethylsilyldiazomethane. Organic Letters, 2014, 16, 2077-2079.	4.6	13
61	Secondary Metabolite Profiling of Curcuma Species Grown at Different Locations Using GC/TOF and UPLC/Q-TOF MS. Molecules, 2014, 19, 9535-9551.	3.8	69
62	Catalytic Asymmetric Insertion of Diazoesters into Aryl-CHO Bonds: Highly Enantioselective Construction of Chiral All-Carbon Quaternary Centers. Journal of the American Chemical Society, 2013, 135, 14556-14559.	13.7	77
63	Asymmetric Synthesis of α-Alkylidene-β-hydroxy-γ-butyrolactones via Enantioselective Tandem Michael–Aldol Reaction. Journal of Organic Chemistry, 2013, 78, 770-775.	3.2	28
64	Catalytic Carbon Insertion into the β-Vinyl C–H Bond of Cyclic Enones with Alkyl Diazoacetates. Organic Letters, 2013, 15, 1428-1431.	4.6	34
65	Catalytic Enantioselective Carbon Insertion into the β-Vinyl C–H Bond of Cyclic Enones. Journal of the American Chemical Society, 2013, 135, 7126-7129.	13.7	49
66	Iridium Complexes Containing Bis(imidazoline thione) and Bis(imidazoline selone) Ligands for Visible-Light-Induced Oxidative Coupling of Benzylamines to Imines. Organometallics, 2013, 32, 3954-3959.	2.3	56
67	Total Synthsis of (+)-Ambuic Acid: α-Bromination with 1,2-Dibromotetrachloroethane. Journal of Organic Chemistry, 2012, 77, 2513-2518.	3.2	23
68	Enantioselective Synthesis of αâ€Alkylâ€Î²â€ketoesters: Asymmetric Roskamp Reaction Catalyzed by an Oxazaborolidinium Ion. Angewandte Chemie - International Edition, 2012, 51, 8322-8325.	13.8	82
69	Metabolite Profiling of Angelica gigas from Different Geographical Origins Using ¹ H NMR and UPLC-MS Analyses. Journal of Agricultural and Food Chemistry, 2011, 59, 8806-8815.	5.2	61
70	Oxazaborolidinium Ion-Catalyzed Cyclopropanation of α-Substituted Acroleins: Enantioselective Synthesis of Cyclopropanes Bearing Two Chiral Quaternary Centers. Journal of the American Chemical Society, 2011, 133, 20708-20711.	13.7	111
71	1H NMR-based metabonomic assessment of probiotic effects in a colitis mouse model. Archives of Pharmacal Research, 2010, 33, 1091-1101.	6.3	68
72	A facile method for the rapid and selective deprotection of methoxymethyl (MOM) ethers. Tetrahedron, 2010, 66, 1673-1677.	1.9	63

#	Article	IF	CITATIONS
73	Facile Approach to Optically Active \hat{l} ±-Alkylidene- \hat{l} 2-amino Esters by Thermal Overman Rearrangement. Organic Letters, 2010, 12, 3234-3237.	4.6	20
74	Highly Enantioselective Mukaiyama Aldol Reactions Catalyzed by a Chiral Oxazaborolidinium Ion: Total Synthesis of (â^')-Inthomycin C. Organic Letters, 2010, 12, 5088-5091.	4.6	52
75	Enantioselective Synthesis of βâ€lodo Morita–Baylis–Hillman Esters by a Catalytic Asymmetric Threeâ€Component Coupling Reaction. Angewandte Chemie - International Edition, 2009, 48, 4398-4401.	13.8	74
76	Catalytic enantioselective 1,3-dipolar cycloadditions of alkyl diazoacetates with \hat{l}_{\pm} , \hat{l}^2 -disubstituted acroleins. Chemical Communications, 2009, , 5460.	4.1	74
77	Enantioselective formal synthesis of antitumor agent (+)-ottelione A. Tetrahedron Letters, 2008, 49, 1965-1967.	1.4	25
78	Asymmetric synthesis of (+)-cis-nemorensic acid from a chiral Diels–Alder adduct of 2,5-dimethylfuran. Chemical Communications, 2007, , 5064.	4.1	18
79	Catalytic enantioselective Diels–Alder reactions of furans and 1,1,1-trifluoroethyl acrylate. Tetrahedron Letters, 2007, 48, 5735-5737.	1.4	26
80	A Highly <i>E</i> Stereoselective Approach to β-lodo Moritaâ^'Baylisâ^'Hillman Esters:  Synthesis of Secokotomolide A. Organic Letters, 2007, 9, 5087-5089.	4.6	27
81	Enantioselective Cyanosilylation of Ketones Catalyzed by a Chiral Oxazaborolidinium Ion ChemInform, 2005, 36, no.	0.0	0
82	Enantioselective Cyanosilylation of Ketones Catalyzed by a Chiral Oxazaborolidinium Ion. Journal of the American Chemical Society, 2005, 127, 5384-5387.	13.7	182
83	Nonparallelism between Reaction Rate and Dienophileâ°'Catalyst Affinity in Catalytic Enantioselective Dielsâ°'Alder Reactions. Organic Letters, 2005, 7, 1633-1636.	4.6	33
84	Highly Enantioselective Cyanosilylation of Aldehydes Catalyzed by a Chiral Oxazaborolidinium Ion ChemInform, 2004, 35, no.	0.0	0
85	Enantioselective and Structure-Selective Dielsâ^'Alder Reactions of Unsymmetrical Quinones Catalyzed by a Chiral Oxazaborolidinium Cation. Predictive Selection Rules. Journal of the American Chemical Society, 2004, 126, 4800-4802.	13.7	132
86	Highly Enantioselective Cyanosilylation of Aldehydes Catalyzed by a Chiral Oxazaborolidinium Ion. Journal of the American Chemical Society, 2004, 126, 8106-8107.	13.7	177
87	Broad-Spectrum Enantioselective Diels—Alder Catalysis by Chiral, Cationic Oxazaborolidines ChemInform, 2003, 34, no.	0.0	0
88	Triflimide Activation of a Chiral Oxazaborolidine Leads to a More General Catalytic System for Enantioselective Dielsâ-'Alder Addition. Journal of the American Chemical Society, 2003, 125, 6388-6390.	13.7	232
89	A Stereoselective Synthesisof a Key Intermediate to $1\hat{l}^2$ -Methylcarbapenem via AziridineRing-opening Reaction. Synlett, 2003, 2003, 1149-1150.	1.8	11
90	Stereospecificity of Aminoglycosideâ^'Ribosomal Interactions. Biochemistry, 2002, 41, 10499-10509.	2.5	35

Do Hyun Ryu

#	Article	IF	CITATIONS
91	Broad-Spectrum Enantioselective Dielsâ^'Alder Catalysis by Chiral, Cationic Oxazaborolidines. Journal of the American Chemical Society, 2002, 124, 9992-9993.	13.7	197
92	Double asymmetric iodoamination; synthesis of C 2 symmetric and meso-amino alcohols. Chemical Communications, 1996, , 355.	4.1	16
93	Cinchona Alkaloids and their Derivatives as Chirality Inducers in Metal-Promoted Enantioselective Carbon-Carbon and Carbon-Heteroatom Bond Forming Reactions., 0,, 73-104.		2