List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1249555/publications.pdf Version: 2024-02-01

RDUCE FUDIE

#	Article	IF	CITATIONS
1	Mechanisms of Thrombus Formation. New England Journal of Medicine, 2008, 359, 938-949.	27.0	1,474
2	The molecular basis of blood coagulation. Cell, 1988, 53, 505-518.	28.9	1,259
3	PADGEM protein: A receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell, 1989, 59, 305-312.	28.9	878
4	Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature, 1992, 359, 848-851.	27.8	771
5	Expression cloning of a functional glycoprotein ligand for P-selectin. Cell, 1993, 75, 1179-1186.	28.9	722
6	Accumulation of Tissue Factor into Developing Thrombi In Vivo Is Dependent upon Microparticle P-Selectin Glycoprotein Ligand 1 and Platelet P-Selectin. Journal of Experimental Medicine, 2003, 197, 1585-1598.	8.5	700
7	Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nature Medicine, 2002, 8, 1175-1180.	30.7	625
8	PADGEM-dependent adhesion of platelets to monocytes and neutrophils is mediated by a lineage-specific carbohydrate, LNF III (CD15). Cell, 1990, 63, 467-474.	28.9	391
9	Thrombus formation in vivo. Journal of Clinical Investigation, 2005, 115, 3355-3362.	8.2	388
10	Localization of Labile Posttranslational Modifications by Electron Capture Dissociation:Â The Case of γ-Carboxyglutamic Acid. Analytical Chemistry, 1999, 71, 4250-4253.	6.5	362
11	Hematopoietic cell-derived microparticle tissue factor contributes to fibrin formation during thrombus propagation. Blood, 2004, 104, 3190-3197.	1.4	323
12	Targeted Gene Disruption Demonstrates That P-Selectin Glycoprotein Ligand 1 (Psgl-1) Is Required for P-Selectin–Mediated but Not E-Selectin–Mediated Neutrophil Rolling and Migration. Journal of Experimental Medicine, 1999, 190, 1769-1782.	8.5	307
13	Protein disulfide isomerase inhibitors constitute a new class of antithrombotic agents. Journal of Clinical Investigation, 2012, 122, 2104-2113.	8.2	257
14	Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends in Molecular Medicine, 2004, 10, 171-178.	6.7	246
15	A critical role for extracellular protein disulfide isomerase during thrombus formation in mice. Journal of Clinical Investigation, 2008, 118, 1123-31.	8.2	245
16	The Biology of P-Selectin Glycoprotein Ligand-1: Its Role as a Selectin Counterreceptor in Leukocyte-Endothelial and Leukocyte-Platelet Interaction. Thrombosis and Haemostasis, 1999, 81, 1-7.	3.4	217
17	A Journey with Platelet P-Selectin: The Molecular Basis of Granule Secretion, Signalling and Cell Adhesion. Thrombosis and Haemostasis, 2001, 86, 214-221.	3.4	216
18	Structural basis of membrane binding by Gla domains of vitamin K–dependent proteins. Nature Structural and Molecular Biology, 2003, 10, 751-756.	8.2	207

BRUCE FURIE

#	Article	IF	CITATIONS
19	Glycoprotein Vl–dependent and –independent pathways of thrombus formation in vivo. Blood, 2006, 107, 3902-3906.	1.4	202
20	Par4 is required for platelet thrombus propagation but not fibrin generation in a mouse model of thrombosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 288-292.	7.1	198
21	Platelet PECAM-1 inhibits thrombus formation in vivo. Blood, 2006, 107, 535-541.	1.4	184
22	Thrombin-initiated platelet activation in vivo is vWF independent during thrombus formation in a laser injury model. Journal of Clinical Investigation, 2007, 117, 953-960.	8.2	148
23	Endothelium-derived but not platelet-derived protein disulfide isomerase is required for thrombus formation in vivo. Blood, 2010, 116, 4665-4674.	1.4	141
24	Leukocyte-versus microparticle-mediated tissue factor transfer during arteriolar thrombus development. Journal of Leukocyte Biology, 2005, 78, 1318-1326.	3.3	135
25	Tissue Factor–Bearing Microparticles and Thrombus Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 728-733.	2.4	132
26	β2-glycoprotein-1 autoantibodies from patients with antiphospholipid syndrome are sufficient to potentiate arterial thrombus formation in a mouse model. Blood, 2011, 117, 3453-3459.	1.4	128
27	Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders. Genome Medicine, 2015, 7, 36.	8.2	119
28	The Molecular Basis of Platelet and Endothelial Cell Interaction with Neutrophils and Monocytes: Role of P-Selectin and the P-Selectin Ligand, PSGL-1. Thrombosis and Haemostasis, 1995, 74, 224-227.	3.4	119
29	Protein disulfide isomerase capture during thrombus formation in vivo depends on the presence of β3 integrins. Blood, 2012, 120, 647-655.	1.4	117
30	Platelets are required for enhanced activation of the endothelium and fibrinogen in a mouse thrombosis model of APS. Blood, 2014, 124, 611-622.	1.4	105
31	PTP-1B is an essential positive regulator of platelet integrin signaling. Journal of Cell Biology, 2005, 170, 837-845.	5.2	101
32	A substrate-driven allosteric switch that enhances PDI catalytic activity. Nature Communications, 2016, 7, 12579.	12.8	98
33	Protein disulfide isomerase inhibition blocks thrombin generation in humans by interfering with platelet factor V activation. JCI Insight, 2017, 2, e89373.	5.0	96
34	Quercetin-3-rutinoside Inhibits Protein Disulfide Isomerase by Binding to Its b′x Domain. Journal of Biological Chemistry, 2015, 290, 23543-23552.	3.4	90
35	Laser-induced endothelial cell activation supports fibrin formation. Blood, 2010, 116, 4675-4683.	1.4	77
36	Initial accumulation of platelets during arterial thrombus formation in vivo is inhibited by elevation of basal cAMP levels. Blood, 2004, 103, 2127-2134.	1.4	74

#	Article	IF	CITATIONS
37	Therapeutic Implications of Protein Disulfide Isomerase Inhibition in Thrombotic Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 16-23.	2.4	73
38	Thiol Isomerases in Thrombus Formation. Circulation Research, 2014, 114, 1162-1173.	4.5	72
39	Protein disulfide isomerase secretion following vascular injury initiates a regulatory pathway for thrombus formation. Nature Communications, 2017, 8, 14151.	12.8	68
40	Cancer-associated thrombosis. Blood Cells, Molecules, and Diseases, 2006, 36, 177-181.	1.4	59
41	Both platelet- and endothelial cell–derived ERp5 support thrombus formation in a laser-induced mouse model of thrombosis. Blood, 2015, 125, 2276-2285.	1.4	59
42	Extracellular Thiol Isomerases and Their Role in Thrombus Formation. Antioxidants and Redox Signaling, 2016, 24, 1-15.	5.4	59
43	Vascular thiol isomerases. Blood, 2016, 128, 893-901.	1.4	58
44	Defective PDI release from platelets and endothelial cells impairs thrombus formation in Hermansky-Pudlak syndrome. Blood, 2015, 125, 1633-1642.	1.4	56
45	The ω-Loop Region of the Human Prothrombin γ-Carboxyglutamic Acid Domain Penetrates Anionic Phospholipid Membranes. Journal of Biological Chemistry, 2001, 276, 23895-23902.	3.4	55
46	γ arboxyglutamic acids 36 and 40 do not contribute to human factor IX function. Protein Science, 1997, 6, 185-196.	7.6	49
47	Compounds targeting disulfide bond forming enzyme DsbB of Gram-negative bacteria. Nature Chemical Biology, 2015, 11, 292-298.	8.0	47
48	Crystal Structure of the Bovine Lactadherin C2 Domain, a Membrane Binding Motif, Shows Similarity to the C2 Domains of Factor V and Factor VIII. Journal of Molecular Biology, 2007, 371, 717-724.	4.2	44
49	Interactions of Platelets, Bloodâ€Borne Tissue Factor, and Fibrin During Arteriolar Thrombus Formation In Vivo. Microcirculation, 2005, 12, 301-311.	1.8	42
50	Bile salt–dependent lipase interacts with platelet CXCR4 and modulates thrombus formation in mice and humans. Journal of Clinical Investigation, 2007, 117, 3708-3719.	8.2	40
51	Trp2313-His2315 of Factor VIII C2 Domain Is Involved in Membrane Binding. Journal of Biological Chemistry, 2010, 285, 8824-8829.	3.4	39
52	Leukocyte Crosstalk at the Vascular Wall. Thrombosis and Haemostasis, 1997, 78, 306-309.	3.4	38
53	Role of Phosphatidylethanolamine in Assembly and Function of the Factor IXaâ^'Factor VIIIa Complex on Membrane Surfacesâ€. Biochemistry, 2000, 39, 13216-13222.	2.5	37
54	Imaging fibrin formation and platelet and endothelial cell activation in vivo. Thrombosis and Haemostasis, 2011, 105, 776-782.	3.4	33

#	Article	IF	CITATIONS
55	Kinetic-based trapping by intervening sequence variants of the active sites of protein-disulfide isomerase identifies platelet protein substrates. Journal of Biological Chemistry, 2017, 292, 9063-9074.	3.4	31
56	Nextâ€generation sequencing for the diagnosis of <i>MYH9</i> â€RD: Predicting pathogenic variants. Human Mutation, 2020, 41, 277-290.	2.5	30
57	Pathogenesis of thrombosis. Hematology American Society of Hematology Education Program, 2009, 2009, 2009, 255-258.	2.5	29
58	How I treat poisoning with vitamin K antagonists. Blood, 2015, 125, 438-442.	1.4	25
59	12-Hydroxyeicosatetraenoic acid upregulates P-selectin-induced tissue factor activity on monocytes. FEBS Letters, 1998, 441, 463-466.	2.8	23
60	A specific plasminogen activator inhibitorâ€1 antagonist derived from inactivated urokinase. Journal of Cellular and Molecular Medicine, 2016, 20, 1851-1860.	3.6	23
61	Glutamyl Substrate-Induced Exposure of a Free Cysteine Residue in the Vitamin K-Dependent γ-Glutamyl Carboxylase Is Critical for Vitamin K Epoxidationâ€. Biochemistry, 1999, 38, 9517-9523.	2.5	22
62	Structure and Mechanism of Action of the Vitamin K-Dependent γ-Glutamyl Carboxylase: Recent Advances from Mutagenesis Studies. Thrombosis and Haemostasis, 1997, 78, 595-598.	3.4	22
63	Regulatory role of thiol isomerases in thrombus formation. Expert Review of Hematology, 2018, 11, 437-448.	2.2	19
64	Active Site-labeled Prothrombin Inhibits Prothrombinase in Vitro and Thrombosis in Vivo. Journal of Biological Chemistry, 2011, 286, 23345-23356.	3.4	17
65	Thiol isomerase ERp57 targets and modulates the lectin pathway of complement activation. Journal of Biological Chemistry, 2019, 294, 4878-4888.	3.4	12
66	Formation of the Clot. Thrombosis Research, 2012, 130, S44-S46.	1.7	9
67	Real Time in vivo Imaging of TissueFactor-Induced Thrombus Formation. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 2003, 33, 26-27.	0.3	7
68	Trousseau's Syndrome Revisited: Tissue Factor-Bearing Microparticles in Pancreatic Cancer Blood, 2005, 106, 259-259.	1.4	7
69	Real-Time In Vivo Imaging of Platelets During Thrombus Formation. , 2007, , 611-626.		6
70	Identification of PDI Substrates by Mechanism-Based Kinetic Trapping. Methods in Molecular Biology, 2019, 1967, 165-182.	0.9	6
71	P-Selectin and Blood Coagulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 877-878.	2.4	5
72	Biosynthesis of Factor IX: Implications for Gene Therapy. Thrombosis and Haemostasis, 1995, 74, 274-277.	3.4	5

#	Article	IF	CITATIONS
73	Importance of GPVI in Platelet Activation and Thrombus Formation In Vivo Blood, 2004, 104, 842-842.	1.4	3
74	Platelets: tetherballs in thrombus formation. Blood, 2007, 109, 394-394.	1.4	2
75	Direct Real Time Visualization of Platelet Calclium Signaling In Vivo: Role of Platelet Activation and Thrombus Formation in a Living Mouse Blood, 2004, 104, 325-325.	1.4	2
76	Rapid Activation of Unstimulated Endothelial Cells Containing Tissue Factor Following Laser-Induced Injury as Monitored Via Calcium Mobilization Blood, 2006, 108, 1786-1786.	1.4	2
77	Endothelial Cell Thiol Isomerases: Potential Role in Thrombus Formation Blood, 2007, 110, 3709-3709.	1.4	2
78	ML359, a Small Molecule Inhibitor of Protein Disulfide Isomerase That Prevents Thrombus Formation and Inhibits Oxidoreductase but Not Transnitrosylase Activity. Blood, 2014, 124, 2880-2880.	1.4	2
79	Wobbling with warfarin. Blood, 2004, 103, 2437-2437.	1.4	1
80	A Role for Bile Salt-Dependent Lipase in Platelet Activation and in Thrombus Formation in Vivo Blood, 2004, 104, 3526-3526.	1.4	1
81	Protein Disulfide Isomerase Is Required for Fibrin Generation and Platelet Thrombus Formation In Vivo Blood, 2007, 110, 292-292.	1.4	1
82	Endothelium but Not Platelet-Derived Protein Disulfide Isomerase Is Required for Fibrin Generation during Thrombus Formation in Vivo Blood, 2008, 112, 691-691.	1.4	1
83	Intravascular but Not Extravascular Tissue Factor Is Required for Fibrin Generation During Thrombus Formation in Cremaster Arterioles in Living Mice Subjected to Laser Injury Blood, 2009, 114, 332-332.	1.4	1
84	Animal Models of Arterial and Venous Thrombosis. Blood, 2014, 124, SCI-2-SCI-2.	1.4	1
85	A Novel Thrombin Fluorogenic Substrate of High Affinity, Catalytic Efficiency and Selectivity Blood, 2005, 106, 1953-1953.	1.4	0
86	Crystal Structure of the Bovine Lactadherin C2 Domain, a Potential Anticoagulant, Shows Similarity to Factor V and Factor VIII Blood, 2006, 108, 194-194.	1.4	0
87	Monitoring Endothelial Cell Activation In Vivo during Thrombus Formation Blood, 2007, 110, 294-294.	1.4	0
88	TRAIL/ DR5 Interactions Are Important for Thymic Damage After Allogeneic Bone Marrow Transplantation Blood, 2009, 114, 234-234.	1.4	0
89	Reduction of Phosphatidylserine Exposure through Copper Chelation Leads to Reduced Fibrin Deposition After Laser Induced Vascular Injury In Vivo Blood, 2009, 114, 3049-3049.	1.4	0
90	Role of Protein Disulfide Isomerase In Thrombus Formation In a Collagen-Induced Pathway of Thrombus Formation. Blood, 2010, 116, 345-345.	1.4	0

#	Article	IF	CITATIONS
91	Regulation of Protein Disulfide Isomerase By S-Nitrosylation Controls Its Function during Thrombus Formation. Blood, 2014, 124, 93-93.	1.4	0
92	Extracellular Protein Disulfide Isomerase Regulates Vitronectin during the Initiation of Thrombus Formation. Blood, 2016, 128, 15-15.	1.4	0
93	Targeting Protein Disulfide Isomerase with the Oral Flavonoid Isoquercetin Prevents Venous Thromboembolism in Advanced Cancer: Results of a Multi-Dose, Multi-Center, Phase II Clinical Trial (CATIQ Study). Blood, 2018, 132, 985-985.	1.4	0