Colin Longstaff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1248625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ls it possible to make a common reference standard for Dâ€dimer measurements? Communication from the ISTH SSC Subcommittee on Fibrinolysis. Journal of Thrombosis and Haemostasis, 2022, 20, 498-507.	3.8	13
2	Extracellular Histones Inhibit Fibrinolysis through Noncovalent and Covalent Interactions with Fibrin. Thrombosis and Haemostasis, 2021, 121, 464-476.	3.4	30
3	Development of an updated assay for prekallikrein activator in albumin and immunoglobulin therapeutics. Vox Sanguinis, 2021, 116, 99-105.	1.5	0
4	Kallikrein directly interacts with and activates Factor IX, resulting in thrombin generation and fibrin formation independent of Factor XI. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	38
5	Size―and chargeâ€dependent modulation of the lytic susceptibility and mechanical stability of fibrinâ€histone clots by heparin and polyphosphate variants. Journal of Thrombosis and Haemostasis, 2021, 19, 1307-1318.	3.8	9
6	Measuring Fibrinolysis. Hamostaseologie, 2021, 41, 069-075.	1.9	6
7	An international collaborative study to establish the WHO 3rd International Standard for Thrombin: Communication from the ISTH SSC subcommittee on factor XIII and fibrinogen. Journal of Thrombosis and Haemostasis, 2021, 19, 852-858.	3.8	0
8	Fibrinogen-mimicking, multiarm nanovesicles for human thrombus-specific delivery of tissue plasminogen activator and targeted thrombolytic therapy. Science Advances, 2021, 7, .	10.3	33
9	Citrullinated Fibrinogen Renders Clots Mechanically Less Stable, but Lysis-Resistant. Circulation Research, 2021, 129, 342-344.	4.5	8
10	Biorelevant polyanions stabilize fibrin against mechanical and proteolytic decomposition: Effects of polymer size and electric charge. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103459.	3.1	8
11	Fibrinogen protects neutrophils from the cytotoxic effects of histones and delays neutrophil extracellular trap formation induced by ionomycin. Scientific Reports, 2020, 10, 11694.	3.3	23
12	How treatment delay may lead to loss of effectiveness of tranexamic acid. ANZ Journal of Surgery, 2020, 90, 416-418.	0.7	3
13	The need for accurate Dâ€dimer reporting in COVIDâ€19: Communication from the ISTH SSC on fibrinolysis. Journal of Thrombosis and Haemostasis, 2020, 18, 2408-2411.	3.8	49
14	An international collaborative study to establish the WHO 4th International Standard for Streptokinase: Communication from the SSC of the ISTH. Journal of Thrombosis and Haemostasis, 2020, 18, 1501-1505.	3.8	3
15	Computational simulations of thrombolysis in acute stroke: Effect of clot size and location on recanalisation. Medical Engineering and Physics, 2019, 73, 9-17.	1.7	10
16	Applying the science of measurement to biology: Why bother?. PLoS Biology, 2019, 17, e3000338.	5.6	18
17	Mathematical Modelling of Intravenous Thrombolysis in Acute Ischaemic stroke: Effects of Dose Regimens on Levels of Fibrinolytic Proteins and Clot Lysis Time. Pharmaceutics, 2019, 11, 111.	4.5	15
18	An activated-platelet-sensitive nanocarrier enables targeted delivery of tissue plasminogen activator for effective thrombolytic therapy. Journal of Controlled Release, 2019, 300, 1-12.	9.9	61

#	Article	IF	CITATIONS
19	Selective Stabilization and Destabilization of Protein Domains in Tissue-Type Plasminogen Activator Using Formulation Excipients. Molecular Pharmaceutics, 2019, 16, 744-755.	4.6	6
20	Increased urokinase and consumption of α2â€antiplasmin as an explanation for the loss of benefit of tranexamic acid after treatment delay. Journal of Thrombosis and Haemostasis, 2019, 17, 195-205.	3.8	23
21	An international collaborative study to calibrate the WHO 2nd International Standard for Ancrod (15/106) and the WHO Reference Reagent for Batroxobin (15/140): communication from the SSC of the ISTH. Journal of Thrombosis and Haemostasis, 2018, 16, 1003-1006.	3.8	4
22	Measuring fibrinolysis: from research to routine diagnostic assays. Journal of Thrombosis and Haemostasis, 2018, 16, 652-662.	3.8	113
23	Development of Shiny app tools to simplify and standardize the analysis of hemostasis assay data: communication from the SSC of the ISTH. Journal of Thrombosis and Haemostasis, 2017, 15, 1044-1046.	3.8	42
24	Mechanism of plasmin generation by S100A10. Thrombosis and Haemostasis, 2017, 117, 1058-1071.	3.4	21
25	Activity Regulation by Fibrinogen and Fibrin of Streptokinase from Streptococcus Pyogenes. PLoS ONE, 2017, 12, e0170936.	2.5	13
26	Neutralisation of the anti-coagulant effects of heparin by histones in blood plasma and purified systems. Thrombosis and Haemostasis, 2016, 115, 591-599.	3.4	43
27	Harmonisation of D-dimer — A call for action. Thrombosis Research, 2016, 137, 219-220.	1.7	56
28	Bleeding related to disturbed fibrinolysis. British Journal of Haematology, 2016, 175, 12-23.	2.5	83
29	An International Collaborative Study to establish the World Health Organization 4th International Standard for Plasmin (13/206): communication from the SSC of the ISTH. Journal of Thrombosis and Haemostasis, 2016, 14, 215-218.	3.8	1
30	DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment. Thrombosis and Haemostasis, 2015, 113, 1289-1298.	3.4	128
31	Basic mechanisms and regulation of fibrinolysis. Journal of Thrombosis and Haemostasis, 2015, 13, S98-S105.	3.8	161
32	An International Collaborative Study to establish the WHO 2nd International Standard for High Molecular Weight Urokinase: communication from SSC of the ISTH. Journal of Thrombosis and Haemostasis, 2014, 12, 415-417.	3.8	2
33	Ambivalent roles of carboxypeptidase B in the lytic susceptibility of fibrin. Thrombosis Research, 2014, 133, 80-87.	1.7	15
34	Fractal Kinetic Behavior of Plasmin on the Surface of Fibrin Meshwork. Biochemistry, 2014, 53, 6348-6356.	2.5	11
35	Biosimilars: the process is the product. The example of recombinant streptokinase. Journal of Thrombosis and Haemostasis, 2014, 12, 1229-1233.	3.8	9
36	Kinetic regulation of the binding of prothrombin to phospholipid membranes. Molecular and Cellular Biochemistry, 2013, 382, 193-201.	3.1	8

#	Article	IF	CITATIONS
37	Mechanical Stability and Fibrinolytic Resistance of Clots Containing Fibrin, DNA, and Histones. Journal of Biological Chemistry, 2013, 288, 6946-6956.	3.4	216
38	Lytic and mechanical stability of clots composed of fibrin and blood vessel wall components. Journal of Thrombosis and Haemostasis, 2013, 11, 529-538.	3.8	15
39	Regulation of fibrinolysis by Câ€ŧerminal lysines operates through plasminogen and plasmin but not tissueâ€ŧype plasminogen activator. Journal of Thrombosis and Haemostasis, 2012, 10, 2354-2360.	3.8	70
40	The interplay between tissue plasminogen activator domains and fibrin structures in the regulation of fibrinolysis: kinetic and microscopic studies. Blood, 2011, 117, 661-668.	1.4	118
41	An international collaborative study to establish the WHO 1st international standard for alphaâ€lâ€antitrypsin. Vox Sanguinis, 2011, 101, 83-89.	1.5	5
42	Hindered dissolution of fibrin formed under mechanical stress. Journal of Thrombosis and Haemostasis, 2011, 9, 979-986.	3.8	92
43	An international collaborative study to establish the WHO 1st international standards for C1â€ɨnhibitor, plasma and concentrate. Journal of Thrombosis and Haemostasis, 2011, 9, 2097-2099.	3.8	9
44	Release of proteolytic activity following reduction in therapeutic human serum albumin containing products: Detection with a new neoepitope endopeptidase immunoassay. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 74-80.	2.8	14
45	Lytic Resistance of Fibrin Containing Red Blood Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2306-2313.	2.4	112
46	DC-SIGN Increases the Affinity of HIV-1 Envelope Glycoprotein Interaction with CD4. PLoS ONE, 2011, 6, e28307.	2.5	34
47	Commentary: Biological standardisation in haemostasis and haematology. Biologicals, 2010, 38, 421-422.	1.4	2
48	Calibration of the WHO 1st International Standard and SSC/ISTH Secondary Coagulation Standard for Tissue Plasminogen Activator Antigen in Plasma. Journal of Thrombosis and Haemostasis, 2010, 8, 1855-1857.	3.8	0
49	How do we assure the quality of biological medicines?. Drug Discovery Today, 2009, 14, 50-55.	6.4	42
50	Fibrin Binding and the Regulation of Plasminogen Activators during Thrombolytic Therapy. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2008, 6, 212-223.	1.0	30
51	Kinetics of the Inhibition of Fusarium Serine Proteinases by Barley (Hordeum vulgare L.) Inhibitors. Journal of Agricultural and Food Chemistry, 2007, 55, 2736-2742.	5.2	43
52	An international collaborative study to investigate a proposed reference method for the determination of potency measurements of fibrinolytics in absolute units. Journal of Thrombosis and Haemostasis, 2007, 5, 412-414.	3.8	7
53	The regulation by fibrinogen and fibrin of tissue plasminogen activator kinetics and inhibition by plasminogen activator inhibitor 1. Journal of Thrombosis and Haemostasis, 2007, 5, 804-811.	3.8	51
54	Fibrinolysis in a lipid environment: modulation through release of free fatty acids. Journal of Thrombosis and Haemostasis, 2007, 5, 1265-1273.	3.8	9

#	Article	IF	CITATIONS
55	ID: 122 Regulation of tPA activation and inhibition kinetics by fibrin and fibrinogen. Journal of Thrombosis and Haemostasis, 2006, 4, 218-218.	3.8	0
56	ID: 126 Computer models of fibrinolysis. Journal of Thrombosis and Haemostasis, 2006, 4, 219-219.	3.8	0
57	The poor quality of streptokinase products in use in developing countries. Journal of Thrombosis and Haemostasis, 2005, 3, 1092-1093.	3.8	14
58	An international collaborative study to replace the 1st international standard for prekallikrein activator. Vox Sanguinis, 2005, 88, 143-151.	1.5	4
59	Regulatory frameworks in developing countries. Nature Biotechnology, 2005, 23, 413-413.	17.5	3
60	A reunification of the US ("NIHâ€) and International Unit into a single standard for Thrombin. Thrombosis and Haemostasis, 2005, 93, 261-266.	3.4	21
61	Fibrinolysis at the Fluid-Solid Interface of Thrombi. Current Medicinal Chemistry Cardiovascular and Hematological Agents, 2005, 3, 341-355.	1.7	25
62	Understanding the enzymology of fibrinolysis and improving thrombolytic therapy. FEBS Letters, 2005, 579, 3303-3309.	2.8	30
63	Phospholipid Barrier to Fibrinolysis. Journal of Biological Chemistry, 2004, 279, 39863-39871.	3.4	14
64	International collaborative study to establish the 3rd International Standard for Streptokinase. Journal of Thrombosis and Haemostasis, 2004, 2, 1411-1415.	3.8	19
65	A proposed reference method for plasminogen activators that enables calculation of enzyme activities in SI units. Journal of Thrombosis and Haemostasis, 2004, 2, 1416-1421.	3.8	41
66	Inhibition of cell surface mediated plasminogen activation by a monoclonal antibody against α-Enolase. American Journal of Hematology, 2003, 72, 234-242.	4.1	96
67	Interactions of the Type III Secretion Pathway Proteins LcrV and LcrG from Yersinia pestis Are Mediated by Coiled-Coil Domains. Journal of Biological Chemistry, 2002, 277, 38714-38722.	3.4	44
68	Differences between neonates and adults in carbohydrate sequences and reaction kinetics of plasmin and α2-antiplasmin. Thrombosis Research, 2002, 105, 247-256.	1.7	23
69	Plasminogen activation on the cell surface. Frontiers in Bioscience - Landmark, 2002, 7, d244.	3.0	7
70	Plasminogen activation on the cell surface. Frontiers in Bioscience - Landmark, 2002, 7, d244-255.	3.0	5
71	A Collaborative Study to Establish the 3rd International Standard for Tissue Plasminogen Activator. Thrombosis and Haemostasis, 2002, 88, 294-297.	3.4	13
72	A collaborative study to establish the 3rd International Standard for tissue plasminogen activator. Thrombosis and Haemostasis, 2002, 88, 294-7.	3.4	5

#	Article	IF	CITATIONS
73	Differences Between Neonates and Adults in Tissue-Type-Plasminogen Activator (t-PA)-Catalyzed Plasminogen Activation With Various Effectors and in Carbohydrate Sequences of Fibrinogen Chains. Thrombosis Research, 2001, 103, 173-184.	1.7	14
74	Functional Consequences of Differences in Carbohydrate Sequences of Fetal and Adult Plasminogen and Fibrinogen. , 2001, , 86-101.		0
75	Characterization of Cell-Associated Plasminogen Activation Catalyzed by Urokinase-Type Plasminogen Activator, but Independent of Urokinase Receptor (uPAR, CD87). Blood, 1999, 93, 3839-3846.	1.4	43
76	Regulation of Tissue Plasminogen Activator Activity by Cells. Journal of Biological Chemistry, 1999, 274, 12414-12422.	3.4	29
77	Characterization of Cell-Associated Plasminogen Activation Catalyzed by Urokinase-Type Plasminogen Activator, but Independent of Urokinase Receptor (uPAR, CD87). Blood, 1999, 93, 3839-3846.	1.4	2
78	Inhibition of thrombin generation by heparin and LMW heparins. Blood Coagulation and Fibrinolysis, 1996, 7, 24-30.	1.0	15
79	A comparison of cultured cells with other promoters of tissue plasminogen activator kinetics. Fibrinolysis, 1995, 9, 178-187.	0.5	11
80	Fragmentation of Therapeutic Human Immunoglobulin Preparations. Vox Sanguinis, 1995, 69, 183-194.	1.5	26
81	Studies on the mechanisms of action of aprotinin and tranexamic acid as plasmin inhibitors and antifibrinolytic agents. Blood Coagulation and Fibrinolysis, 1994, 5, 537-42.	1.0	73
82	Heparin binding affinity of normal and genetically modified antithrombin III measured using a monoclonal antibody to the heparin binding site of antithrombin III. Biochemistry, 1993, 32, 7286-7293.	2.5	29
83	An International Collaborative Study to Investigate Standardisation of Hirudin Potency. Thrombosis and Haemostasis, 1993, 69, 430-435.	3.4	18
84	An international collaborative study to investigate standardisation of hirudin potency. Thrombosis and Haemostasis, 1993, 69, 430-5.	3.4	8
85	Studies on the mechanism of binding of serpins and serine proteases. Blood Coagulation and Fibrinolysis, 1992, 3, 89-98.	1.0	10
86	Kinetics of plasmin activation of single chain urinary-type plasminogen activator (scu-PA) and demonstration of a high affinity interaction between scu-PA and plasminogen Journal of Biological Chemistry, 1992, 267, 173-179.	3.4	32
87	Characterization of recombinant C1 inhibitor P1 variants Journal of Biological Chemistry, 1992, 267, 7013-7020.	3.4	45
88	Kinetics of plasmin activation of single chain urinary-type plasminogen activator (scu-PA) and demonstration of a high affinity interaction between scu-PA and plasminogen. Journal of Biological Chemistry, 1992, 267, 173-9.	3.4	28
89	Fourier transform infrared studies of active-site-methylated rhodopsin. Implications for chromophore-protein interaction, transducin activation, and the reaction pathway. Biophysical Journal, 1991, 59, 640-644.	0.5	18
90	Serpin-serine protease binding kinetics: .alpha.2-antiplasmin as a model inhibitor. Biochemistry, 1991, 30, 979-986.	2.5	88

#	Article	IF	CITATIONS
91	The photoreaction of active-site-methylated bacteriorhodopsin: an investigation using static and time-resolved infrared difference spectroscopy. Biochemistry, 1990, 29, 3915-3923.	2.5	10
92	Recombinant chymotrypsin inhibitor 2: expression, kinetic analysis of inhibition with .alphachymotrypsin and wild-type and mutant subtilisin BPN', and protein engineering to investigate inhibitory specificity and mechanism. Biochemistry, 1990, 29, 7339-7347.	2.5	92
93	PHOTOCHEMISTRY OF METHYLATED RHODOPSINS. Photochemistry and Photobiology, 1988, 48, 493-496.	2.5	13
94	Photochemistry of monomethylated and permethylated bacteriorhodopsin. Biophysical Journal, 1988, 54, 557-562.	0.5	6
95	Deprotonation of the Schiff base of bacteriorhodopsin is obligate in light-induced proton pumping. Biochemistry, 1987, 26, 6107-6113.	2.5	19
96	Chemical modification of rhodopsin and its effect on regeneration and G protein activation. Biochemistry, 1986, 25, 6311-6319.	2.5	12
97	Deprotonation of the Schiff base of rhodopsin is obligate in the activation of the G protein Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 4209-4213.	7.1	116
98	Methylation of the active-site lysine of rhodopsin. Biochemistry, 1985, 24, 8137-8145.	2.5	26
99	Negative ion fast atom bombardment mass spectrometry.In situreactions of boronic acids with triols and related compounds, sugars and nucleosides. Biomedical Mass Spectrometry, 1983, 10, 512-527.	1.9	37
100	APPLICATIONS OF IMMOBILISED BORONIC ACIDS. , 1983, , 433-443.		5
101	Derivatization and mass spectrometric investigations of substituted benzeneboronic acids. The use of linked scanning during gas chromatography mass spectrometry. Organic Mass Spectrometry, 1982, 17, 508-518.	1.3	23
102	Gas chromatography of aromatic boronic acids: on-column derivatization. Journal of Chromatography A, 1982, 249, 174-179.	3.7	8