Ke-Xue Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1247875/publications.pdf

Version: 2024-02-01

117625 161849 3,799 107 34 54 h-index citations g-index papers 108 108 108 2536 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Egg white protein addition induces protein aggregation and fibrous structure formation of textured wheat gluten. Food Chemistry, 2022, 371, 131102.	8.2	20
2	Effect of superheated steam treatment and extrusion on lipid stability of black soybean noodles during storage. Food Control, 2022, 132, 108388.	5 . 5	19
3	Impact of laccase-induced protein cross-linking on the in vitro starch digestion of black highland barley noodles. Food Hydrocolloids, 2022, 124, 107298.	10.7	23
4	Inhibition of aspartic acid on the darkening of fresh wet noodles. International Journal of Food Science and Technology, 2022, 57, 390-399.	2.7	2
5	Effects and underlying mechanisms of insoluble dietary fiber and ferulic acid on the crumb structure of steamed bread. Food Hydrocolloids, 2022, 125, 107448.	10.7	11
6	Effect of rehydration on textural properties, oral behavior, kinetics and water state of textured wheat gluten. Food Chemistry, 2022, 376, 131934.	8.2	10
7	Effect of acidity regulators on the shelf life, quality, and physicochemical characteristics of fresh wet noodles. Journal of Cereal Science, 2022, 103, 103409.	3.7	15
8	Metabolomics analysis of freeze–thaw tolerance enhancement mechanism of Îμ-poly-l-lysine on industrial yeast. Food Chemistry, 2022, 382, 132315.	8.2	6
9	Effects of extruded endogenous starch on the gel-entrapped network formation in gluten-free Tartary buckwheat noodles during sheeting. LWT - Food Science and Technology, 2022, 160, 113226.	5.2	4
10	Effects of freeze-thaw cycles on the quality of frozen raw noodles. Food Chemistry, 2022, 387, 132940.	8.2	13
11	Effects of tempering with plasma-activated water on total plate count and quality properties of wheat flour. Journal of Cereal Science, 2022, 105, 103468.	3.7	9
12	Effect of phosphate salts on the shelf-life and quality characteristics of semi-dried noodles. Food Chemistry, 2022, 384, 132481.	8.2	13
13	Effect of freeze-thaw cycles on the physicochemical properties and frying performance of frozen Youtiao dough. Food Chemistry, 2022, 386, 132854.	8.2	24
14	Inhibition of hexose oxidase on the dark spots in fresh wet noodle sheets: A feasible prevention of dark spots. Food Chemistry, 2021, 339, 128021.	8.2	7
15	Effect of sodium bicarbonate on quality of machine-made Kongxin noodles. LWT - Food Science and Technology, 2021, 138, 110670.	5.2	11
16	Influence of Îμ-poly-l-lysine treated yeast on gluten polymerization and freeze–thaw tolerance of frozen dough. Food Chemistry, 2021, 343, 128440.	8.2	27
17	The addition of alpha amylase improves the quality of Chinese dried noodles. Journal of Food Science, 2021, 86, 860-866.	3.1	12
18	Insight into the Relationship Between Quality Characteristics and Major Chemical Components of Chinese Traditional Hand-Stretched Dried Noodles: a Comparative Study. Food and Bioprocess Technology, 2021, 14, 945-955.	4.7	5

#	Article	IF	Citations
19	Influence of protein type, content and polymerization on in vitro starch digestibility of sorghum noodles. Food Research International, 2021, 142, 110199.	6.2	27
20	Combined effect of NaCl and resting on dough rheology of Chinese traditional handâ€stretched dried noodles and the underlying mechanism. Cereal Chemistry, 2021, 98, 774-783.	2.2	7
21	Effect of Humidity-Controlled Dehydration on Microbial Growth and Quality Characteristics of Fresh Wet Noodles. Foods, 2021, 10, 844.	4.3	9
22	Inhibition of L-Cysteine on the Browning of Fresh Wet Noodles. Foods, 2021, 10, 1156.	4.3	18
23	Effects of ultrasoundâ€assisted resting on the qualities of whole wheat dough sheets and noodles. International Journal of Food Science and Technology, 2021, 56, 5609-5618.	2.7	6
24	Effect of Superheated Steam Treatment on the Lipid Stability of Dried Whole Wheat Noodles during Storage. Foods, 2021, 10, 1348.	4.3	10
25	Effect of dough mixing with slightly acidic electrolyzed water on the shelf-life and quality characteristics of fresh wet noodles. Food Control, 2021, 124, 107891.	5.5	15
26	Changes of lipids in noodle dough and dried noodles during industrial processing. Journal of Food Science, 2021, 86, 3517-3528.	3.1	6
27	Effect of pre-treated wheat bran on semi-dried whole wheat noodles for extending shelf-life and improving quality characteristics. LWT - Food Science and Technology, 2021, 146, 111503.	5.2	10
28	Influence of extrusion on storage quality of dried oat noodles: Lipid degradation and off-flavours. Journal of Cereal Science, 2021, 101, 103316.	3.7	19
29	The effects of extruded endogenous starch on the processing properties of gluten-free Tartary buckwheat noodles. Carbohydrate Polymers, 2021, 267, 118170.	10.2	23
30	Thermal-aggregation behavior of gluten in frozen dough induced by $\hat{l}\mu$ -poly-L-lysine treated yeast. Food Chemistry, 2021, 359, 129985.	8.2	8
31	The impact of phosphates on the fibrous structure formation of textured wheat gluten. Food Hydrocolloids, 2021, 119, 106844.	10.7	19
32	Effect of NaHCO3 and freeze–thaw cycles on frozen dough: From water state, gluten polymerization and microstructure. Food Chemistry, 2021, 358, 129869.	8.2	27
33	Impact of gluten quality on textural stability of cooked noodles and the underlying mechanism. Food Hydrocolloids, 2021, 119, 106842.	10.7	52
34	Effect of superheated steam treatment on the lipid stability of whole wheat flour. Food Chemistry, 2021, 363, 130333.	8.2	16
35	Effects of insoluble dietary fiber and ferulic acid on the quality of steamed bread and gluten aggregation properties. Food Chemistry, 2021, 364, 130444.	8.2	32
36	Effects of insoluble dietary fiber and ferulic acid on the rheological properties of dough. Food Hydrocolloids, 2021, 121, 107008.	10.7	34

#	Article	IF	Citations
37	Influence of the Addition of Extruded Endogenous Tartary Buckwheat Starch on Processing and Quality of Gluten-Free Noodles. Foods, 2021, 10, 2693.	4.3	3
38	Effects of wheat tempering with slightly acidic electrolyzed water on the microbial, biological, and chemical characteristics of different flour streams. LWT - Food Science and Technology, 2020, 118, 108790.	5.2	16
39	Enhancing the freezing–thawing tolerance of frozen dough using Îμ-poly-L-lysine treated yeast. Food Bioscience, 2020, 37, 100699.	4.4	15
40	Polyphenol oxidase browning in the formation of dark spots on fresh wet noodle sheets: How dark spots formed. Food Chemistry, 2020, 329, 126800.	8.2	25
41	Effect of fresh egg white addition on the quality characteristics and protein aggregation of oat noodles. Food Chemistry, 2020, 330, 127319.	8.2	38
42	Effect of thermal treatments on <i>in vitro</i> starch digestibility of sorghum dried noodles. Food and Function, 2020, 11, 3420-3431.	4.6	30
43	Water Cooking Stability of Dried Noodles Enriched with Different Particle Size and Concentration Green Tea Powders. Foods, 2020, 9, 298.	4.3	13
44	Revealing the effect mechanism of NaCl on the rheological properties of dough of Chinese traditional hand-stretched dried noodles. Food Chemistry, 2020, 320, 126606.	8.2	20
45	Effect of ozonated water on physicochemical, microbiological, and textural properties of semiâ€dried noodles. Journal of Food Processing and Preservation, 2020, 44, e14404.	2.0	9
46	Deterioration mechanisms of high-moisture wheat-based food $\hat{a} \in$ A review from physicochemical, structural, and molecular perspectives. Food Chemistry, 2020, 318, 126495.	8.2	35
47	Effect of superheated steam treatment on quality characteristics of whole wheat flour and storage stability of semi-dried whole wheat noodle. Food Chemistry, 2020, 322, 126738.	8.2	61
48	Effects of tempering with steam on the water distribution of wheat grains and quality properties of wheat flour. Food Chemistry, 2020, 323, 126842.	8.2	25
49	Effect of soybean milk addition on the quality of frozen-cooked noodles. Food Hydrocolloids, 2019, 87, 187-193.	10.7	37
50	Rheological and quality characteristics of composite gluten-free dough and biscuits supplemented with fermented and unfermented Agaricus bisporus polysaccharide flour. Food Chemistry, 2019, 271, 193-203.	8.2	57
51	Influences of alkali on the quality and protein polymerization of buckwheat Chinese steamed bread. Food Chemistry, 2019, 283, 52-58.	8.2	31
52	Effects of frozen storage on the quality characteristics of frozen cooked noodles. Food Chemistry, 2019, 283, 522-529.	8.2	80
53	Effect of Agaricus bisporus polysaccharide flour and inulin on the antioxidant and structural properties of gluten-free breads. Journal of Food Measurement and Characterization, 2019, 13, 1884-1897.	3.2	7
54	Inhibiting effect of low-molecular weight polyols on the physico-chemical and structural deteriorations of gluten protein during storage of fresh noodles. Food Chemistry, 2019, 287, 11-19.	8.2	35

#	Article	IF	Citations
55	Effect of different mixing and kneading process on the quality characteristics of frozen cooked noodle. LWT - Food Science and Technology, 2019, 101, 583-589.	5.2	33
56	Increasing the physicochemical stability of stored green tea noodles: Analysis of the quality and chemical components. Food Chemistry, 2019, 278, 333-341.	8.2	16
57	Effect of barley βâ€glucan on water redistribution and thermal properties of dough. International Journal of Food Science and Technology, 2019, 54, 2329-2337.	2.7	17
58	Impact of arabinoxylan with different molecular weight on the thermoâ€mechanical, rheological, water mobility and microstructural characteristics of wheat dough. International Journal of Food Science and Technology, 2018, 53, 2150-2158.	2.7	20
59	Effects of alkali on protein polymerization and textural characteristics of textured wheat protein. Food Chemistry, 2018, 239, 579-587.	8.2	59
60	The enhanced inhibition of water extract of black tea under baking treatment on $\hat{l}\pm$ -amylase and $\hat{l}\pm$ -glucosidase. International Journal of Biological Macromolecules, 2018, 107, 129-136.	7.5	27
61	Characterization of oil extracted from whole grain flour treated with ozone gas. Journal of Cereal Science, 2018, 79, 527-533.	3.7	16
62	Shelf life characteristics of bread produced from ozonated wheat flour. Journal of Texture Studies, 2018, 49, 492-502.	2.5	25
63	Assessment of rheological, physicochemical, and staling characteristics of gluten-free dough and bread containing Agaricus bisporus polysaccharide flour and inulin. Journal of Food Measurement and Characterization, 2018, 12, 2032-2044.	3.2	16
64	Artificial neural network – Genetic algorithm to optimize wheat germ fermentation condition: Application to the production of two anti-tumor benzoquinones. Food Chemistry, 2017, 227, 264-270.	8.2	41
65	Delineating the quality and component changes of whole-wheat flour and storage stability of fresh noodles induced by microwave treatment. LWT - Food Science and Technology, 2017, 84, 378-384.	5.2	39
66	Shelf-life extension of semi-dried buckwheat noodles by the combination of aqueous ozone treatment and modified atmosphere packaging. Food Chemistry, 2017, 237, 553-560.	8.2	54
67	Effect of Barley Î ² -Glucan on the Gluten Polymerization Process in Dough during Heat Treatment. Journal of Agricultural and Food Chemistry, 2017, 65, 6063-6069.	5.2	37
68	Impact of Characteristics of Different Wheat Flours on the Quality of Frozen Cooked Noodles. Cereal Chemistry, 2017, 94, 881-886.	2.2	26
69	The impact of protein cross-linking induced by alkali on the quality of buckwheat noodles. Food Chemistry, 2017, 221, 1178-1185.	8.2	90
70	Critical conditions accelerating the deterioration of fresh noodles: A study on temperature, pH, water content, and water activity. Journal of Food Processing and Preservation, 2017, 41, e13173.	2.0	29
71	Impact of solid state fermentation on nutritional, physical and flavor properties of wheat bran. Food Chemistry, 2017, 217, 28-36.	8.2	138
72	Delineating the physico-chemical, structural, and water characteristic changes during the deterioration of fresh noodles. Food Chemistry, 2017, 216, 374-381.	8.2	79

#	Article	IF	CITATIONS
73	Effect of deamidationâ€induced modification on umami and bitter taste of wheat gluten hydrolysates. Journal of the Science of Food and Agriculture, 2017, 97, 3181-3188.	3.5	37
74	Changes in the enzyme-induced release of bitter peptides from wheat gluten hydrolysates. RSC Advances, 2016, 6, 102249-102257.	3.6	14
75	Effect of sequential hydrolysis with endo- and exo-peptidase on bitterness properties of wheat gluten hydrolysates. RSC Advances, 2016, 6, 27659-27668.	3.6	41
76	Polymerization of wheat gluten and the changes of glutenin macropolymer (GMP) during the production of Chinese steamed bread. Food Chemistry, 2016, 201, 275-283.	8.2	108
77	Heat-induced interaction between egg white protein and wheat gluten. Food Chemistry, 2016, 197, 699-708.	8.2	87
78	Quality characteristics, structural changes, and storage stability of semi-dried noodles induced by moderate dehydration. Food Chemistry, 2016, 194, 797-804.	8.2	45
79	The Effect of Active Packaging on Microbial Stability and Quality of Chinese Steamed Bread. Packaging Technology and Science, 2015, 28, 775-787.	2.8	24
80	Macroporous adsorbent resin-based wheat bran polyphenol extracts inhibition effects on H2O2-induced oxidative damage in HEK293 cells. RSC Advances, 2015, 5, 20931-20938.	3.6	4
81	Resistance investigation of wheat bran polyphenols extracts on HEK293 cells against oxidative damage. RSC Advances, 2015, 5, 16116-16124.	3.6	7
82	Activation of Endogenous Phytase and Degradation of Phytate in Wheat Bran. Journal of Agricultural and Food Chemistry, 2015, 63, 1082-1087.	5.2	31
83	Reducing phytate content in wheat bran by directly removing the aleurone cell content with teeth roller mill and ultrasonic cleaner. Journal of Cereal Science, 2015, 64, 133-138.	3.7	11
84	Effect of steaming on the quality characteristics of frozen cooked noodles. LWT - Food Science and Technology, 2015, 62, 1134-1140.	5.2	56
85	Effect of Steam Flash Explosion Pretreatment on Phytate Degradation of Wheat Bran. Food and Bioprocess Technology, 2015, 8, 1552-1560.	4.7	30
86	Ferulic acid renders protection to HEK293 cells against oxidative damage and apoptosis induced by hydrogen peroxide. In Vitro Cellular and Developmental Biology - Animal, 2015, 51, 722-729.	1.5	33
87	Natural Additives in Wheatâ€Based Pasta and Noodle Products: Opportunities for Enhanced Nutritional and Functional Properties. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 347-357.	11.7	93
88	The impact of salt and alkali on gluten polymerization and quality of fresh wheat noodles. Journal of Cereal Science, 2014, 60, 507-513.	3.7	114
89	Retarding effects of organic acids, hydrocolloids and microwave treatment on the discoloration of green tea fresh noodles. LWT - Food Science and Technology, 2014, 55, 176-182.	5.2	18
90	Delineating the protein changes in Asian noodles induced by vacuum mixing. Food Chemistry, 2014, 143, 9-16.	8.2	62

#	Article	IF	Citations
91	Delineating the microbial and physical–chemical changes during storage of ozone treated wheat flour. Innovative Food Science and Emerging Technologies, 2013, 20, 223-229.	5.6	49
92	Protective effects of wheat germ protein isolate hydrolysates (WGPIH) against hydrogen peroxide-induced oxidative stress in PC12 cells. Food Research International, 2013, 53, 297-303.	6.2	44
93	PHYSICOCHEMICAL PROPERTIES AND SALTED NOODLE-MAKING QUALITY OF PURPLE SWEET POTATO FLOUR AND WHEAT FLOUR BLENDS. Journal of Food Processing and Preservation, 2013, 37, 709-716.	2.0	14
94	Functional properties of chitosan–xylose Maillard reaction products and their application to semi-dried noodle. Carbohydrate Polymers, 2013, 92, 1972-1977.	10.2	63
95	Effect of superfine green tea powder on the thermodynamic, rheological and fresh noodle making properties of wheat flour. LWT - Food Science and Technology, 2012, 46, 23-28.	5.2	82
96	Evaluation the quality characteristics of wheat flour and shelf-life of fresh noodles as affected by ozone treatment. Food Chemistry, 2012, 135, 2163-2169.	8.2	100
97	Effect of vacuum mixing on the quality characteristics of fresh noodles. Journal of Food Engineering, 2012, 110, 525-531.	5.2	95
98	Influence of ultrasound during wheat gluten hydrolysis on the antioxidant activities of the resulting hydrolysate. International Journal of Food Science and Technology, 2011, 46, 1053-1059.	2.7	30
99	Effect of different cooking methods on the flavour constituents of mushroom (<i>Agaricus) Tj ETQq1 1 0.784314 2011, 46, 1100-1108.</i>	rgBT /Ov 2.7	erlock 10 Tf 66
100	Antioxidant activities and total phenolic contents of various extracts from defatted wheat germ. Food Chemistry, 2011, 126, 1122-1126.	8.2	176
101	Comparison of functional properties and secondary structures of defatted wheat germ proteins separated by reverse micelles and alkaline extraction and isoelectric precipitation. Food Chemistry, 2010, 123, 1163-1169.	8.2	85
102	Effect of cysteine on structural, rheological properties and solubility of wheat gluten by enzymatic hydrolysis. International Journal of Food Science and Technology, 2010, 45, 2155-2161.	2.7	20
103	Optimization of ultrasound-assisted extraction of defatted wheat germ proteins by reverse micelles. Journal of Cereal Science, 2009, 50, 266-271.	3.7	75
104	Optimization of a novel backward extraction of defatted wheat germ protein from reverse micelles. Innovative Food Science and Emerging Technologies, 2009, 10, 328-333.	5.6	32
105	Protein extraction from defatted wheat germ by reverse micelles: Optimization of the forward extraction. Journal of Cereal Science, 2008, 48, 829-835.	3.7	37
106	Proteins Extracted from Defatted Wheat Germ: Nutritional and Structural Properties. Cereal Chemistry, 2006, 83, 69-75.	2.2	123
107	COMPARATIVE STUDY OF CHEMICAL COMPOSITION AND PHYSICOCHEMICAL PROPERTIES OF DEFATTED WHEAT GERM FLOUR AND ITS PROTEIN ISOLATE. Journal of Food Biochemistry, 2006, 30, 329-341.	2.9	22