## Victoriano Garre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1247171/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Recent Advances and Future Directions in the Understanding of Mucormycosis. Frontiers in Cellular and Infection Microbiology, 2022, 12, 850581.                                                                                 | 3.9  | 10        |
| 2  | Role of Cytosolic Malic Enzyme in Oleaginicity of High-Lipid-Producing Fungal Strain Mucor<br>circinelloides WJ11. Journal of Fungi (Basel, Switzerland), 2022, 8, 265.                                                         | 3.5  | 2         |
| 3  | Transformation and CRISPR-Cas9-mediated homologous recombination in the fungus Rhizopus microsporus. STAR Protocols, 2022, 3, 101237.                                                                                           | 1.2  | 2         |
| 4  | Genetic Manipulation in Mucorales and New Developments to Study Mucormycosis. International<br>Journal of Molecular Sciences, 2022, 23, 3454.                                                                                   | 4.1  | 6         |
| 5  | Secretion of the siderophore rhizoferrin is regulated by the cAMP-PKA pathway and is involved in the virulence of Mucor lusitanicus. Scientific Reports, 2022, 12, .                                                            | 3.3  | 11        |
| 6  | A Mucoralean White Collar-1 Photoreceptor Controls Virulence by Regulating an Intricate Gene<br>Network during Host Interactions. Microorganisms, 2021, 9, 459.                                                                 | 3.6  | 7         |
| 7  | The RNAi Mechanism Regulates a New Exonuclease Gene Involved in the Virulence of Mucorales.<br>International Journal of Molecular Sciences, 2021, 22, 2282.                                                                     | 4.1  | 9         |
| 8  | A ribonuclease III involved in virulence of Mucorales fungi has evolved to cut exclusively single-stranded RNA. Nucleic Acids Research, 2021, 49, 5294-5307.                                                                    | 14.5 | 6         |
| 9  | Role of the Non-Canonical RNAi Pathway in the Antifungal Resistance and Virulence of Mucorales.<br>Genes, 2021, 12, 586.                                                                                                        | 2.4  | 2         |
| 10 | Deletion of Plasma Membrane Malate Transporters Increased Lipid Accumulation in the Oleaginous<br>Fungus <i>Mucor circinelloides</i> WJ11. Journal of Agricultural and Food Chemistry, 2021, 69,<br>9632-9641.                  | 5.2  | 16        |
| 11 | DNA Methylation on N6-Adenine Regulates the Hyphal Development during Dimorphism in the<br>Early-Diverging Fungus Mucor lusitanicus. Journal of Fungi (Basel, Switzerland), 2021, 7, 738.                                       | 3.5  | 4         |
| 12 | Genetic Modification of Mucor circinelloides for Canthaxanthin Production by Heterologous Expression of β-carotene Ketolase Gene. Frontiers in Nutrition, 2021, 8, 756218.                                                      | 3.7  | 8         |
| 13 | Stable and reproducible homologous recombination enables CRISPR-based engineering in the fungus<br>Rhizopus microsporus. Cell Reports Methods, 2021, 1, 100124.                                                                 | 2.9  | 17        |
| 14 | Light regulates a Phycomyces blakesleeanus gene family similar to the carotenogenic repressor gene of Mucor circinelloides. Fungal Biology, 2020, 124, 338-351.                                                                 | 2.5  | 10        |
| 15 | Mitochondrial Citrate Transport System in the Fungus Mucor circinelloides: Identification,<br>Phylogenetic Analysis, and Expression Profiling During Growth and Lipid Accumulation. Current<br>Microbiology, 2020, 77, 220-231. | 2.2  | 11        |
| 16 | A non-canonical RNAi pathway controls virulence and genome stability in Mucorales. PLoS Genetics, 2020, 16, e1008611.                                                                                                           | 3.5  | 21        |
| 17 | The DASH-type Cryptochrome from the Fungus Mucor circinelloides Is a Canonical CPD-Photolyase.<br>Current Biology, 2020, 30, 4483-4490.e4.                                                                                      | 3.9  | 19        |
| 18 | Increased Accumulation of Medium-Chain Fatty Acids by Dynamic Degradation of Long-Chain Fatty<br>Acids in Mucor circinelloides. Genes, 2020, 11, 890.                                                                           | 2.4  | 15        |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The heterotrimeric Gâ€protein beta subunit Gpb1 controls hyphal growth under low oxygen conditions through the protein kinase A pathway and is essential for virulence in the fungus <i>Mucor circinelloides</i> . Cellular Microbiology, 2020, 22, e13236. | 2.1 | 15        |
| 20 | Genes, Pathways, and Mechanisms Involved in the Virulence of Mucorales. Genes, 2020, 11, 317.                                                                                                                                                               | 2.4 | 42        |
| 21 | Arf-like proteins (Arl1 and Arl2) are involved in mitochondrial homeostasis in Mucor circinelloides.<br>Fungal Biology, 2020, 124, 619-628.                                                                                                                 | 2.5 | 7         |
| 22 | Mucorales Species and Macrophages. Journal of Fungi (Basel, Switzerland), 2020, 6, 94.                                                                                                                                                                      | 3.5 | 39        |
| 23 | Comparative genomics applied to Mucor species with different lifestyles. BMC Genomics, 2020, 21, 135.                                                                                                                                                       | 2.8 | 23        |
| 24 | Comparative Analysis of β-Carotene Production by Mucor circinelloides Strains CBS 277.49 and WJ11 under Light and Dark Conditions. Metabolites, 2020, 10, 38.                                                                                               | 2.9 | 24        |
| 25 | Improved SDA Production in High Lipid Accumulating Strain of <i>Mucor circinelloides</i> WJ11 by Genetic Modification. American Journal of Biochemistry and Biotechnology, 2020, 16, 138-147.                                                               | 0.4 | 15        |
| 26 | 5 Small RNAs in Fungi. , 2020, , 105-122.                                                                                                                                                                                                                   |     | 0         |
| 27 | Early Diverging Fungus Mucor circinelloides Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres. Current Biology, 2019, 29, 3791-3802.e6.                                                                              | 3.9 | 77        |
| 28 | Increased Lipid Accumulation inMucorcircinelloidesby Overexpression of Mitochondrial Citrate<br>Transporter Genes. Industrial & Engineering Chemistry Research, 2019, 58, 2125-2134.                                                                        | 3.7 | 31        |
| 29 | Genetic Modification of Mucor circinelloides to Construct Stearidonic Acid Producing Cell Factory.<br>International Journal of Molecular Sciences, 2019, 20, 1683.                                                                                          | 4.1 | 31        |
| 30 | Role of Arf-like proteins (Arl1 and Arl2) of Mucor circinelloides in virulence and antifungal susceptibility. Fungal Genetics and Biology, 2019, 129, 40-51.                                                                                                | 2.1 | 18        |
| 31 | Construction of DGLA producing cell factory by genetic modification of Mucor circinelloides.<br>Microbial Cell Factories, 2019, 18, 64.                                                                                                                     | 4.0 | 29        |
| 32 | <i>Mucor circinelloides</i> Thrives inside the Phagosome through an Atf-Mediated Germination<br>Pathway. MBio, 2019, 10, .                                                                                                                                  | 4.1 | 28        |
| 33 | Engineering of Fatty Acid Synthases (FASs) to Boost the Production of Medium-Chain Fatty Acids<br>(MCFAs) in Mucor circinelloides. International Journal of Molecular Sciences, 2019, 20, 786.                                                              | 4.1 | 30        |
| 34 | Heterotrimeric G-alpha subunits Gpa11 and Gpa12 define a transduction pathway that control spore size and virulence in Mucor circinelloides. PLoS ONE, 2019, 14, e0226682.                                                                                  | 2.5 | 10        |
| 35 | Understanding <i>Mucor circinelloides</i> pathogenesis by comparative genomics and phenotypical studies. Virulence, 2018, 9, 707-720.                                                                                                                       | 4.4 | 44        |
| 36 | Control of morphology and virulence by ADP-ribosylation factors (Arf) in Mucor circinelloides.<br>Current Genetics, 2018, 64, 853-869.                                                                                                                      | 1.7 | 41        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | <i>Mucor circinelloides</i> : Growth, Maintenance, and Genetic Manipulation. Current Protocols in Microbiology, 2018, 49, e53.                                                                                            | 6.5 | 38        |
| 38 | Generation of A Mucor circinelloides Reporter Strain—A Promising New Tool to Study Antifungal<br>Drug Efficacy and Mucormycosis. Genes, 2018, 9, 613.                                                                     | 2.4 | 16        |
| 39 | An Adult Zebrafish Model Reveals that Mucormycosis Induces Apoptosis of Infected Macrophages.<br>Scientific Reports, 2018, 8, 12802.                                                                                      | 3.3 | 33        |
| 40 | Components of a new gene family of ferroxidases involved in virulence are functionally specialized in fungal dimorphism. Scientific Reports, 2018, 8, 7660.                                                               | 3.3 | 47        |
| 41 | Molecular Tools for Carotenogenesis Analysis in the Mucoral Mucor circinelloides. Methods in<br>Molecular Biology, 2018, 1852, 221-237.                                                                                   | 0.9 | 28        |
| 42 | Production of fatty acid methyl esters and other bioactive compounds in elicited cultures of the fungus Mucor circinelloides. Mycological Progress, 2017, 16, 507-512.                                                    | 1.4 | 3         |
| 43 | Generation of lycopene-overproducing strains of the fungus Mucor circinelloides reveals important aspects of lycopene formation and accumulation. Biotechnology Letters, 2017, 39, 439-446.                               | 2.2 | 10        |
| 44 | Improved Î <sup>3</sup> -linolenic acid production in Mucor circinelloides by homologous overexpressing of delta-12 and delta-6 desaturases. Microbial Cell Factories, 2017, 16, 113.                                     | 4.0 | 45        |
| 45 | RNAi-Based Functional Genomics Identifies New Virulence Determinants in Mucormycosis. PLoS<br>Pathogens, 2017, 13, e1006150.                                                                                              | 4.7 | 53        |
| 46 | RNA Interference in Fungi: Retention and Loss. Microbiology Spectrum, 2016, 4, .                                                                                                                                          | 3.0 | 24        |
| 47 | Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Current<br>Biology, 2016, 26, 1577-1584.                                                                                              | 3.9 | 175       |
| 48 | A new regulatory mechanism controlling carotenogenesis in the fungus Mucor circinelloides as a<br>target to generate β-carotene over-producing strains by genetic engineering. Microbial Cell Factories,<br>2016, 15, 99. | 4.0 | 33        |
| 49 | Role of malate transporter in lipid accumulation of oleaginous fungus Mucor circinelloides. Applied<br>Microbiology and Biotechnology, 2016, 100, 1297-1305.                                                              | 3.6 | 42        |
| 50 | Distinct RNAi Pathways in the Regulation of Physiology and Development in the Fungus Mucor circinelloides. Advances in Genetics, 2015, 91, 55-102.                                                                        | 1.8 | 22        |
| 51 | Transformation of Mucor circinelloides f. lusitanicus Protoplasts. Fungal Biology, 2015, , 49-59.                                                                                                                         | 0.6 | 8         |
| 52 | The RNAi machinery controls distinct responses to environmental signals in the basal fungus Mucor circinelloides. BMC Genomics, 2015, 16, 237.                                                                            | 2.8 | 45        |
| 53 | A Non-canonical RNA Silencing Pathway Promotes mRNA Degradation in Basal Fungi. PLoS Genetics, 2015, 11, e1005168.                                                                                                        | 3.5 | 57        |
| 54 | Comparison of Biochemical Activities between High and Low Lipid-Producing Strains of Mucor circinelloides: An Explanation for the High Oleaginicity of Strain WJ11. PLoS ONE, 2015, 10, e0128396.                         | 2.5 | 66        |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The RNAi Machinery in Mucorales: The Emerging Role of Endogenous Small RNAs. , 2014, , 291-313.                                                                                        |     | 8         |
| 56 | A White Collar 1-like protein mediates opposite regulatory functions in Mucor circinelloides. Fungal<br>Genetics and Biology, 2013, 52, 42-52.                                         | 2.1 | 19        |
| 57 | Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus<br>Mucor circinelloides. Applied Microbiology and Biotechnology, 2013, 97, 3063-3072. | 3.6 | 93        |
| 58 | Biodiesel from microbial oil. , 2012, , 179-203.                                                                                                                                       |     | 5         |
| 59 | Protein Kinase A Regulatory Subunit Isoforms Regulate Growth and Differentiation in Mucor circinelloides: Essential Role of PKAR4. Eukaryotic Cell, 2012, 11, 989-1002.                | 3.4 | 18        |
| 60 | Molecular Tools for Carotenogenesis Analysis in the Zygomycete Mucor circinelloides. Methods in<br>Molecular Biology, 2012, 898, 85-107.                                               | 0.9 | 22        |
| 61 | High reliability transformation of the basal fungus Mucor circinelloides by electroporation. Journal of Microbiological Methods, 2011, 84, 442-446.                                    | 1.6 | 62        |
| 62 | Direct Transformation of Fungal Biomass from Submerged Cultures into Biodiesel. Energy &<br>Fuels, 2010, 24, 3173-3178.                                                                | 5.1 | 94        |
| 63 | Photobiology in the Zygomycota: Multiple photoreceptor genes for complex responses to light.<br>Fungal Genetics and Biology, 2010, 47, 893-899.                                        | 2.1 | 76        |
| 64 | A Subunit of Protein Kinase A Regulates Growth and Differentiation in the Fungus <i>Mucor circinelloides</i> . Eukaryotic Cell, 2009, 8, 933-944.                                      | 3.4 | 28        |
| 65 | Biodiesel production from biomass of an oleaginous fungus. Biochemical Engineering Journal, 2009,<br>48, 22-27.                                                                        | 3.6 | 261       |
| 66 | A RING-finger photocarotenogenic repressor involved in asexual sporulation inMucor circinelloides.<br>FEMS Microbiology Letters, 2008, 280, 81-88.                                     | 1.8 | 23        |
| 67 | A RINGâ€finger protein regulates carotenogenesis via proteolysisâ€independent ubiquitylation of a White<br>Collarâ€I â€like activator. Molecular Microbiology, 2008, 70, 1026-1036.    | 2.5 | 52        |
| 68 | Role of the White Collar 1 Photoreceptor in Carotenogenesis, UV Resistance, Hydrophobicity, and<br>Virulence of <i>Fusarium oxysporum</i> . Eukaryotic Cell, 2008, 7, 1227-1230.       | 3.4 | 91        |
| 69 | Non-AUG Translation Initiation of a Fungal RING Finger Repressor Involved in Photocarotenogenesis.<br>Journal of Biological Chemistry, 2007, 282, 15394-15403.                         | 3.4 | 17        |
| 70 | Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Molecular<br>Microbiology, 2006, 61, 1023-1037.                                                | 2.5 | 109       |
| 71 | Light induction of the carotenoid biosynthesis pathway in Blakeslea trispora. Fungal Genetics and<br>Biology, 2005, 42, 141-153.                                                       | 2.1 | 54        |
| 72 | The RING-finger domain of the fungal repressor crgA is essential for accurate light regulation of carotenogenesis. Molecular Microbiology, 2004, 52, 1463-1474.                        | 2.5 | 26        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Cloning, characterization and heterologous expression of theBlakeslea trisporagene encoding<br>orotidine-5′-monophosphate decarboxylase. FEMS Microbiology Letters, 2003, 222, 229-236.        | 1.8 | 15        |
| 74 | Structural and functional analysis of an oligomeric hydrophobin gene from Claviceps purpurea.<br>Molecular Plant Pathology, 2003, 4, 31-41.                                                    | 4.2 | 17        |
| 75 | cigA, a light-inducible gene involved in vegetative growth in Mucor circinelloides is regulated by the carotenogenic repressor crgA. Fungal Genetics and Biology, 2003, 38, 122-132.           | 2.1 | 26        |
| 76 | A negative regulator of light-inducible carotenogenesis in Mucor circinelloides. Molecular Genetics and Genomics, 2001, 266, 463-470.                                                          | 2.1 | 75        |
| 77 | Secretion of a Fungal Extracellular Catalase by Claviceps purpurea During Infection of Rye: Putative Role in Pathogenicity and Suppression of Host Defense. Phytopathology, 1998, 88, 744-753. | 2.2 | 53        |
| 78 | Cloning, Characterization, and Targeted Disruption of cpcat1, Coding for an in Planta Secreted<br>Catalase of Claviceps purpurea. Molecular Plant-Microbe Interactions, 1998, 11, 772-783.     | 2.6 | 58        |
| 79 | Mutants ofPhycomyces blakesleeanusDefective in Acetyl-CoA Synthetase. Fungal Genetics and Biology, 1996, 20, 70-73.                                                                            | 2.1 | 1         |
| 80 | Isolation of the facA (acetyl-CoA synthetase) gene of Phycomyces blakesleeanus. Molecular Genetics<br>and Genomics, 1994, 244, 278-286.                                                        | 2.4 | 19        |
| 81 | RNA Interference in Fungi: Retention and Loss. , 0, , 657-671.                                                                                                                                 |     | 3         |
| 82 | A Landmark in the Study of Mucormycosis: Stable and Reproducible Homologous Recombination in<br><i>Rhizopus microsporus</i> . SSRN Electronic Journal, 0, , .                                  | 0.4 | 1         |
| 83 | Early Diverging Fungus <i>Mucor circinelloides</i> Lacks Centromeric Histone CENP-A and Displays a<br>Mosaic of Point and Regional Centromeres. SSRN Electronic Journal, 0, , .                | 0.4 | 1         |
| 84 | Overexpression of the Mitochondrial Malic Enzyme Genes (malC and malD) Improved the Lipid<br>Accumulation in Mucor circinelloides WJ11. Frontiers in Microbiology, 0, 13, .                    | 3.5 | 1         |