Andrew F Read

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1246978/publications.pdf

Version: 2024-02-01

23567 12,540 152 58 citations h-index papers

g-index 171 171 171 10920 docs citations times ranked citing authors all docs

28297

105

#	Article	IF	CITATIONS
1	Decomposing health: tolerance and resistance to parasites in animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 37-49.	4.0	667
2	Disentangling Genetic Variation for Resistance and Tolerance to Infectious Diseases in Animals. Science, 2007, 318, 812-814.	12.6	638
3	Imperfect vaccines and the evolution of pathogen virulence. Nature, 2001, 414, 751-756.	27.8	557
4	Host densities as determinants of abundance in parasite communities. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1283-1289.	2.6	451
5	Influence of climate on malaria transmission depends on daily temperature variation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15135-15139.	7.1	443
6	Understanding the link between malaria risk and climate. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13844-13849.	7.1	355
7	Virulence and competitive ability in genetically diverse malaria infections. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7624-7628.	7.1	353
8	Evolutionary Causes and Consequences of Immunopathology. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 373-397.	8.3	338
9	Insecticide Control of Vector-Borne Diseases: When Is Insecticide Resistance a Problem?. PLoS Pathogens, 2010, 6, e1001000.	4.7	298
10	Fungal Pathogen Reduces Potential for Malaria Transmission. Science, 2005, 308, 1638-1641.	12.6	293
11	Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens. PLoS Biology, 2015, 13, e1002198.	5.6	291
12	Can fungal biopesticides control malaria?. Nature Reviews Microbiology, 2007, 5, 377-383.	28.6	239
13	The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10871-10877.	7.1	237
14	The Effect of Temperature on Anopheles Mosquito Population Dynamics and the Potential for Malaria Transmission. PLoS ONE, 2013, 8, e79276.	2.5	236
15	WITHIN-HOST COMPETITION IN GENETICALLY DIVERSE MALARIA INFECTIONS: PARASITE VIRULENCE AND COMPETITIVE SUCCESS. Evolution; International Journal of Organic Evolution, 2006, 60, 1358-1371.	2.3	209
16	How to Make Evolution-Proof Insecticides for Malaria Control. PLoS Biology, 2009, 7, e1000058.	5.6	208
17	Why is the effect of malaria parasites on mosquito survival still unresolved?. Trends in Parasitology, 2002, 18, 256-261.	3.3	196
18	Dynamics of Multiple Infection and Withinâ€Host Competition in Genetically Diverse Malaria Infections. American Naturalist, 2005, 166, 531-542.	2.1	193

#	Article	IF	CITATIONS
19	Animal Defenses against Infectious Agents: Is Damage Control More Important Than Pathogen Control. PLoS Biology, 2008, 6, e1000004.	5.6	187
20	Imperfect vaccination: some epidemiological and evolutionary consequences. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1129-1136.	2.6	176
21	Antibiotic resistance management. Evolution, Medicine and Public Health, 2014, 2014, 147-147.	2.5	176
22	GENETIC RELATIONSHIPS BETWEEN PARASITE VIRULENCE AND TRANSMISSION IN THE RODENT MALARIA <i>PLASMODIUM CHABAUDI</i> 53, 689-703.	2.3	173
23	Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19914-19919.	7.1	167
24	Immunity Promotes Virulence Evolution in a Malaria Model. PLoS Biology, 2004, 2, e230.	5.6	145
25	Complex effects of temperature on mosquito immune function. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3357-3366.	2.6	139
26	Identifying genetic markers of adaptation for surveillance of viral host jumps. Nature Reviews Microbiology, 2010, 8, 802-813.	28.6	138
27	Malaria-induced changes in host odors enhance mosquito attraction. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11079-11084.	7.1	137
28	The Role of Immuneâ€Mediated Apparent Competition in Genetically Diverse Malaria Infections. American Naturalist, 2006, 168, 41-53.	2.1	131
29	Why does drug resistance readily evolve but vaccine resistance does not?. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162562.	2.6	125
30	Malaria in India: The Center for the Study of Complex Malaria in India. Acta Tropica, 2012, 121, 267-273.	2.0	115
31	Does High-Dose Antimicrobial Chemotherapy Prevent the Evolution of Resistance?. PLoS Computational Biology, 2016, 12, e1004689.	3.2	115
32	Antibiotic Resistance: A Primer and Call to Action. Health Communication, 2015, 30, 309-314.	3.1	113
33	Within-host competition in genetically diverse malaria infections: parasite virulence and competitive success. Evolution; International Journal of Organic Evolution, 2006, 60, 1358-71.	2.3	112
34	Exposing malaria in-host diversity and estimating population diversity by capture-recapture using massively parallel pyrosequencing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20138-20143.	7.1	110
35	Host heterogeneity is a determinant of competitive exclusion or coexistence in genetically diverse malaria infections. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1073-1080.	2.6	107
36	Mixed–genotype infections of malaria parasites: within–host dynamics and transmission success of competing clones. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 927-935.	2.6	106

#	Article	IF	Citations
37	How to Use a Chemotherapeutic Agent When Resistance to It Threatens the Patient. PLoS Biology, 2017, 15, e2001110.	5.6	103
38	Adaptive changes in Plasmodium transmission strategies following chloroquine chemotherapy. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 553-559.	2.6	102
39	VIRULENCE OF MIXED-CLONE AND SINGLE-CLONE INFECTIONS OF THE RODENT MALARIA <i>PLASMODIUM CHABAUDI</i> Li>Li>Li>Li>Li>Li>Li>Li>Li>Li>Li>Li>Li	2.3	97
40	â€~Manipulation' without the parasite: altered feeding behaviour of mosquitoes is not dependent on infection with malaria parasites. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130711.	2.6	97
41	Do malaria parasites manipulate mosquitoes?. Trends in Parasitology, 2012, 28, 466-470.	3.3	93
42	Evolutionary History and Attenuation of Myxoma Virus on Two Continents. PLoS Pathogens, 2012, 8, e1002950.	4.7	91
43	The importance of temperature fluctuations in understanding mosquito population dynamics and malaria risk. Royal Society Open Science, 2017, 4, 160969.	2.4	88
44	Competitive release of drug resistance following drug treatment of mixed Plasmodium chabaudi infections. Malaria Journal, 2004, 3, 33.	2.3	83
45	Is selection relevant in the evolutionary emergence of drug resistance?. Trends in Microbiology, 2015, 23, 126-133.	7.7	83
46	Towards evolutionâ€proof malaria control with insecticides. Evolutionary Applications, 2009, 2, 469-480.	3.1	82
47	Aggressive Chemotherapy and the Selection of Drug Resistant Pathogens. PLoS Pathogens, 2013, 9, e1003578.	4.7	81
48	Potential drivers of virulence evolution in aquaculture. Evolutionary Applications, 2016, 9, 344-354.	3.1	81
49	The path of least resistance: aggressive or moderate treatment?. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140566.	2.6	79
50	Myxoma Virus and the Leporipoxviruses: An Evolutionary Paradigm. Viruses, 2015, 7, 1020-1061.	3.3	79
51	Why the evolution of vaccine resistance is less of a concern than the evolution of drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12878-12886.	7.1	79
52	Lethal and Pre-Lethal Effects of a Fungal Biopesticide Contribute to Substantial and Rapid Control of Malaria Vectors. PLoS ONE, 2011, 6, e23591.	2.5	77
53	Lessons from Agriculture for the Sustainable Management of Malaria Vectors. PLoS Medicine, 2012, 9, e1001262.	8.4	7 3
54	VACCINATION AND REDUCED COHORT DURATION CAN DRIVE VIRULENCE EVOLUTION: MAREK'S DISEASE VIRUS AND INDUSTRIALIZED AGRICULTURE. Evolution; International Journal of Organic Evolution, 2013, 67, 851-860.	2.3	73

#	Article	IF	CITATIONS
55	Next step in the ongoing arms race between myxoma virus and wild rabbits in Australia is a novel disease phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9397-9402.	7.1	70
56	PERSPECTIVE: Evolutionary biology and the avoidance of antimicrobial resistance. Evolutionary Applications, 2009, 2, 40-51.	3.1	66
57	HOST IMMUNE STATUS DETERMINES SEXUALITY IN A PARASITIC NEMATODE. Evolution; International Journal of Organic Evolution, 1997, 51, 393-401.	2.3	65
58	Understanding and Predicting Strainâ€5pecific Patterns of Pathogenesis in the Rodent Malaria <i>Plasmodium chabaudi</i> . American Naturalist, 2008, 172, E214-E238.	2.1	65
59	CHEMOTHERAPY, WITHIN-HOST ECOLOGY AND THE FITNESS OF DRUG-RESISTANT MALARIA PARASITES. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	2.3	65
60	Resource limitation prevents the emergence of drug resistance by intensifying within-host competition. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13774-13779.	7.1	65
61	Real-time quantitative PCR for analysis of genetically mixed infections of malaria parasites: technique validation and applications. Molecular and Biochemical Parasitology, 2003, 131, 83-91.	1.1	63
62	Real-time quantitative PCR for analysis of candidate fungal biopesticides against malaria: Technique validation and first applications. Journal of Invertebrate Pathology, 2009, 100, 160-168.	3.2	60
63	Sex allocation and population structure in apicomplexan (protozoa) parasites. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 257-263.	2.6	58
64	Identifying key questions in the ecology and evolution of cancer. Evolutionary Applications, 2021, 14, 877-892.	3.1	58
65	Volatile biomarkers of symptomatic and asymptomatic malaria infection in humans. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5780-5785.	7.1	55
66	The Effects of Age, Exposure History and Malaria Infection on the Susceptibility of Anopheles Mosquitoes to Low Concentrations of Pyrethroid. PLoS ONE, 2011, 6, e24968.	2.5	53
67	Alterations in mosquito behaviour by malaria parasites: potential impact on force of infection. Malaria Journal, 2014, 13, 164.	2.3	50
68	Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations. PLoS Biology, 2020, 18, e3000713.	5.6	50
69	Monitor for COVID-19 vaccine resistance evolution during clinical trials. PLoS Biology, 2020, 18, e3001000.	5.6	50
70	The Evolutionary Consequences of Blood-Stage Vaccination on the Rodent Malaria Plasmodium chabaudi. PLoS Biology, 2012, 10, e1001368.	5.6	49
71	Plasmodium chabaudi: Effect of Antimalarial Drugs on Gametocytogenesis. Experimental Parasitology, 1999, 93, 45-54.	1.2	48
72	The threat (or not) of insecticide resistance for malaria control. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8900-8902.	7.1	46

#	Article	IF	CITATION
73	Microbial evolution (Communication arising): Antitoxin vaccines and pathogen virulence. Nature, 2002, 417, 610-610.	27.8	45
74	The effect of partial host immunity on the transmission of malaria parasites. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2325-2330.	2.6	44
75	Bystander Selection for Antimicrobial Resistance: Implications for Patient Health. Trends in Microbiology, 2019, 27, 864-877.	7.7	40
76	A deep sequencing tool for partitioning clearance rates following antimalarial treatment in polyclonal infections. Evolution, Medicine and Public Health, 2016, 2016, 21-36.	2.5	38
77	Industry-Wide Surveillance of Marek's Disease Virus on Commercial Poultry Farms. Avian Diseases, 2017, 61, 153.	1.0	37
78	Fungal bioinsecticide with a sting. Nature Biotechnology, 2007, 25, 1367-1368.	17.5	35
79	Immune response and insulin signalling alter mosquito feeding behaviour to enhance malaria transmission potential. Scientific Reports, 2015, 5, 11947.	3.3	35
80	Reduction in host-finding behaviour in fungus-infected mosquitoes is correlated with reduction in olfactory receptor neuron responsiveness. Malaria Journal, 2011, 10, 219.	2.3	34
81	Rapid Response to Selection, Competitive Release and Increased Transmission Potential of Artesunate-Selected Plasmodium chabaudi Malaria Parasites. PLoS Pathogens, 2014, 10, e1004019.	4.7	33
82	A nutrient mediates intraspecific competition between rodent malaria parasites <i>in vivo</i> . Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171067.	2.6	33
83	Modifying Adaptive Therapy to Enhance Competitive Suppression. Cancers, 2020, 12, 3556.	3.7	33
84	Does the drug sensitivity of malaria parasites depend on their virulence?. Malaria Journal, 2008, 7, 257.	2.3	32
85	Storage and persistence of a candidate fungal biopesticide for use against adult malaria vectors. Malaria Journal, 2012, 11, 354.	2.3	32
86	Genome Scale Evolution of Myxoma Virus Reveals Host-Pathogen Adaptation and Rapid Geographic Spread. Journal of Virology, 2013, 87, 12900-12915.	3.4	32
87	Quantitative Analysis of Immune Response and Erythropoiesis during Rodent Malarial Infection. PLoS Computational Biology, 2010, 6, e1000946.	3.2	30
88	Evaluating the lethal and pre-lethal effects of a range of fungi against adult Anopheles stephensi mosquitoes. Malaria Journal, 2012, 11, 365.	2.3	29
89	Enhanced Transmission of Drug-Resistant Parasites to Mosquitoes following Drug Treatment in Rodent Malaria. PLoS ONE, 2012, 7, e37172.	2.5	29
90	Predicting optimal transmission investment in malaria parasites. Evolution; International Journal of Organic Evolution, 2016, 70, 1542-1558.	2.3	27

#	Article	IF	Citations
91	Cancer therapy: Attempt cure or manage drug resistance?. Evolutionary Applications, 2020, 13, 1660-1672.	3.1	27
92	Plasmodium chabaudi: Reverse transcription PCR for the detection and quantification of transmission stage malaria parasites. Experimental Parasitology, 2006, 112, 13-20.	1.2	26
93	Causes of Variation in Malaria Infection Dynamics: Insights from Theory and Data. American Naturalist, 2011, 178, E174-E188.	2.1	26
94	Clinical management of resistance evolution in a bacterial infection. Evolution, Medicine and Public Health, 2015, 2015, 281-288.	2.5	26
95	Existing Infection Facilitates Establishment and Density of Malaria Parasites in Their Mosquito Vector. PLoS Pathogens, 2015, 11, e1005003.	4.7	25
96	Drugs and parasites: global experiments in life history evolution?. Ecology Letters, 1998, 1, 10-12.	6.4	25
97	Modelling Marek's Disease Virus (MDV) infection: parameter estimates for mortality rate and infectiousness. BMC Veterinary Research, 2011, 7, 70.	1.9	24
98	Relationship Between Levels of Very Virulent MDV in Poultry Dust and in Feather Tips from Vaccinated Chickens. Avian Diseases, 2013, 57, 440-447.	1.0	24
99	Prospective malaria control using entomopathogenic fungi: comparative evaluation of impact on transmission and selection for resistance. Malaria Journal, 2012, 11, 383.	2.3	22
100	Genomic and phenotypic characterization of myxoma virus from Great Britain reveals multiple evolutionary pathways distinct from those in Australia. PLoS Pathogens, 2017, 13, e1006252.	4.7	22
101	Synchrony in Malaria Infections: How Intensifying Within-Host Competition Can Be Adaptive. American Naturalist, 2014, 183, E36-E49.	2.1	21
102	The effectiveness of mass vaccination on Marek's disease virus (MDV) outbreaks and detection within a broiler barn: A modeling study. Epidemics, 2013, 5, 208-217.	3.0	20
103	Fitness consequences of altered feeding behavior in immune-challenged mosquitoes. Parasites and Vectors, 2016, 9, 113.	2.5	20
104	Quantifying Transmission Investment in Malaria Parasites. PLoS Computational Biology, 2016, 12, e1004718.	3.2	20
105	Mosquitoes Cut Short. Science, 2009, 323, 51-52.	12.6	18
106	Punctuated Evolution of Myxoma Virus: Rapid and Disjunct Evolution of a Recent Viral Lineage in Australia. Journal of Virology, 2019, 93, .	3.4	17
107	Modeling Marek's disease virus transmission: A framework for evaluating the impact of farming practices and evolution. Epidemics, 2018, 23, 85-95.	3.0	16
108	The impact of within-host ecology on the fitness of a drug-resistant parasite. Evolution, Medicine and Public Health, 2018, 2018, 127-137.	2.5	16

#	Article	IF	CITATIONS
109	Vancomycin-Resistant Enterococcus Acquisition in a Tertiary Care Hospital: Testing the Roles of Antibiotic Use, Proton Pump Inhibitor Use, and Colonization Pressure. Open Forum Infectious Diseases, 2019, 6, ofz139.	0.9	16
110	An adjunctive therapy administered with an antibiotic prevents enrichment of antibiotic-resistant clones of a colonizing opportunistic pathogen. ELife, 2020, 9, .	6.0	15
111	THE IMPACT OF IMMUNIZATION ON COMPETITION WITHINPLASMODIUMINFECTIONS. Evolution; International Journal of Organic Evolution, 2008, 62, 2359-2371.	2.3	14
112	CD4 ⁺ T cells do not mediate within-host competition between genetically diverse malaria parasites. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1171-1179.	2.6	14
113	DNA from Dust: Comparative Genomics of Large DNA Viruses in Field Surveillance Samples. MSphere, 2016, 1, .	2.9	13
114	Impact of an Antimicrobial Stewardship Intervention on Within- and Between-Patient Daptomycin Resistance Evolution in Vancomycin-Resistant Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	13
115	Daptomycin treatment impacts resistance in off-target populations of vancomycin-resistant Enterococcus faecium. PLoS Biology, 2020, 18, e3000987.	5.6	13
116	Sex ratios of malaria parasites and related protozoa., 2002,, 314-332.		12
117	An observational study of the temporal and spatial patterns of Marek's-disease-associated leukosis condemnation of young chickens in the United States of America. Preventive Veterinary Medicine, 2015, 120, 328-335.	1.9	12
118	A Murine Model to Study Epilepsy and SUDEP Induced by Malaria Infection. Scientific Reports, 2017, 7, 43652.	3.3	12
119	The evolution of virulence. Nature, 1993, 362, 500-501.	27.8	11
120	Institution-wide and Within-Patient Evolution of Daptomycin Susceptibility in Vancomycin-Resistant <i>Enterococcus faecium</i> Bloodstream Infections. Infection Control and Hospital Epidemiology, 2018, 39, 226-228.	1.8	11
121	The contribution of host cell-directed vs. parasite-directed immunity to the disease and dynamics of malaria infections. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22386-22392.	7.1	11
122	Understanding genetic variation in in vivo tolerance to artesunate: implications for treatment efficacy and resistance monitoring. Evolutionary Applications, 2015, 8, 296-304.	3.1	10
123	Factors associated with antibiotic prescribing for acute bronchitis at a university health center. BMC Infectious Diseases, 2020, 20, 177.	2.9	10
124	Reverse Engineering Field Isolates of Myxoma Virus Demonstrates that Some Gene Disruptions or Losses of Function Do Not Explain Virulence Changes Observed in the Field. Journal of Virology, 2017, 91, .	3.4	9
125	Effect of drug dose and timing of treatment on the emergence of drug resistance in vivo in a malaria model. Evolution, Medicine and Public Health, 2020, 2020, 196-210.	2.5	8
126	A longitudinal study of the impact of university student return to campus on the SARS-CoV-2 seroprevalence among the community members. Scientific Reports, 2022, 12, .	3.3	8

#	Article	IF	Citations
127	Immune-Mediated Competition in Rodent Malaria Is Most Likely Caused by Induced Changes in Innate Immune Clearance of Merozoites. PLoS Computational Biology, 2014, 10, e1003416.	3.2	7
128	Evolutionary consequences of feedbacks between within-host competition and disease control. Evolution, Medicine and Public Health, 2020, 2020, 30-34.	2.5	7
129	Molecular epidemiology of Marek's disease virus in central Pennsylvania, USA. Virus Evolution, 2019, 5, vey042.	4.9	6
130	The economics of managing evolution. PLoS Biology, 2021, 19, e3001409.	5.6	6
131	Antitoxin vaccines and pathogen virulence. Nature, 2002, 417, 610-610.	27.8	5
132	Relevance of Undetectably Rare Resistant Malaria Parasites in Treatment Failure: Experimental Evidence from Plasmodium chabaudi. American Journal of Tropical Medicine and Hygiene, 2015, 92, 1214-1221.	1.4	3
133	HALDANE'S COINCIDENCE: A REPLY TO BROOKFIELD. Evolution; International Journal of Organic Evolution, 1993, 47, 1888-1889.	2.3	2
134	The vector as protector. Nature, 2013, 498, 177-178.	27.8	1
135	The PLOS Biology XV Collection: 15 Years of Exceptional Science Highlighted across 12 Months. PLoS Biology, 2019, 17, e3000180.	5.6	1
136	Evolutionary immunology?. Evolutionary Mechanisms of Defense Reactions. By V. Vetvieka & P. Sima. Birkhauser Verlag, Basel. 1998. 196 pp. Price CHF 148.00/DM 178.00 ISBN 3-7643-5813-0 (hardback) Journal of Evolutionary Biology, 2000, 13, 151-152.	1.7	0
137	George C Williams Prize 2015. Evolution, Medicine and Public Health, 2016, 2016, 212-213.	2.5	0
138	The selfish germ. PLoS Biology, 2017, 15, e2003250.	5.6	0
139	Ecology, Evolution, and the Cancer Patient. , 2017, , 255-257.		0
140	Evolution, Medicine and Public Health $\hat{a} \in ``Embracing the Future. Evolution, Medicine and Public Health, 2019, , .$	2.5	0
141	Title is missing!. , 2020, 18, e3000713.		0
142	Title is missing!. , 2020, 18, e3000713.		0
143	Title is missing!. , 2020, 18, e3000713.		0
144	Title is missing!. , 2020, 18, e3000713.		0

#	Article	IF	CITATIONS
145	Title is missing!. , 2020, 18, e3000713.		O
146	Title is missing!. , 2020, 18, e3000713.		0
147	Title is missing!. , 2020, 18, e3000987.		O
148	Title is missing!. , 2020, 18, e3000987.		0
149	Title is missing!. , 2020, 18, e3000987.		O
150	Title is missing!. , 2020, 18, e3000987.		0
151	Title is missing!. , 2020, 18, e3000987.		O
152	Title is missing!. , 2020, 18, e3000987.		0