List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1246056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathogen Recognition and Innate Immunity. Cell, 2006, 124, 783-801.	13.5	9,878
2	The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology, 2010, 11, 373-384.	7.0	7,320
3	Toll-like receptor signalling. Nature Reviews Immunology, 2004, 4, 499-511.	10.6	7,318
4	Pattern Recognition Receptors and Inflammation. Cell, 2010, 140, 805-820.	13.5	6,978
5	A Toll-like receptor recognizes bacterial DNA. Nature, 2000, 408, 740-745.	13.7	5,827
6	TOLL-LIKERECEPTORS. Annual Review of Immunology, 2003, 21, 335-376.	9.5	5,168
7	Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunology, 2001, 2, 675-680.	7.0	4,209
8	The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature Immunology, 2004, 5, 730-737.	7.0	3,433
9	Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8. Science, 2004, 303, 1526-1529.	6.0	3,413
10	Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 2006, 441, 101-105.	13.7	3,292
11	The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 2001, 410, 1099-1103.	13.7	3,186
12	Toll-like Receptors and Their Crosstalk with Other Innate Receptors in Infection and Immunity. Immunity, 2011, 34, 637-650.	6.6	3,060
13	Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA. Science, 2004, 303, 1529-1531.	6.0	3,050
14	Differential Roles of TLR2 and TLR4 in Recognition of Gram-Negative and Gram-Positive Bacterial Cell Wall Components. Immunity, 1999, 11, 443-451.	6.6	3,040
15	Role of Adaptor TRIF in the MyD88-Independent Toll-Like Receptor Signaling Pathway. Science, 2003, 301, 640-643.	6.0	2,808
16	Small anti-viral compounds activate immune cells via the TLR7 MyD88–dependent signaling pathway. Nature Immunology, 2002, 3, 196-200.	7.0	2,290
17	IPS-1, an adaptor triggering RIC-I- and Mda5-mediated type I interferon induction. Nature Immunology, 2005, 6, 981-988.	7.0	2,254
18	5'-Triphosphate RNA Is the Ligand for RIG-I. Science, 2006, 314, 994-997.	6.0	2,094

#	Article	IF	CITATIONS
19	TLR signaling pathways. Seminars in Immunology, 2004, 16, 3-9.	2.7	2,017
20	Signaling to NF-κB by Toll-like receptors. Trends in Molecular Medicine, 2007, 13, 460-469.	3.5	1,932
21	Unresponsiveness of MyD88-Deficient Mice to Endotoxin. Immunity, 1999, 11, 115-122.	6.6	1,906
22	Targeted Disruption of the MyD88 Gene Results in Loss of IL-1- and IL-18-Mediated Function. Immunity, 1998, 9, 143-150.	6.6	1,890
23	Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1Î ² production. Nature, 2008, 456, 264-268.	13.7	1,837
24	Pathogen Recognition by the Innate Immune System. International Reviews of Immunology, 2011, 30, 16-34.	1.5	1,780
25	Innate immune recognition of viral infection. Nature Immunology, 2006, 7, 131-137.	7.0	1,654
26	Collaborative Induction of Inflammatory Responses by Dectin-1 and Toll-like Receptor 2. Journal of Experimental Medicine, 2003, 197, 1107-1117.	4.2	1,447
27	Shared and Unique Functions of the DExD/H-Box Helicases RIG-I, MDA5, and LGP2 in Antiviral Innate Immunity. Journal of Immunology, 2005, 175, 2851-2858.	0.4	1,438
28	Essential role of Stat6 in IL-4 signalling. Nature, 1996, 380, 627-630.	13.7	1,425
29	TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature, 2007, 446, 916-920.	13.7	1,405
30	The roles of TLRs, RLRs and NLRs in pathogen recognition. International Immunology, 2009, 21, 317-337.	1.8	1,355
31	TLR signaling. Seminars in Immunology, 2007, 19, 24-32.	2.7	1,349
32	Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma differentiation–associated gene 5. Journal of Experimental Medicine, 2008, 205, 1601-1610.	4.2	1,327
33	Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. Journal of Experimental Medicine, 2006, 203, 2673-2682.	4.2	1,320
34	Toll-like receptors control activation of adaptive immune responses. Nature Immunology, 2001, 2, 947-950.	7.0	1,283
35	Cell Type-Specific Involvement of RIG-I in Antiviral Response. Immunity, 2005, 23, 19-28.	6.6	1,221
36	Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB Journal, 1990, 4, 2860-2867.	0.2	1,204

#	Article	IF	CITATIONS
37	Cutting Edge: Role of Toll-Like Receptor 1 in Mediating Immune Response to Microbial Lipoproteins. Journal of Immunology, 2002, 169, 10-14.	0.4	1,186
38	Identification of Oxidative Stress and Toll-like Receptor 4 Signaling as a Key Pathway of Acute Lung Injury. Cell, 2008, 133, 235-249.	13.5	1,164
39	Enhanced Th1 Activity and Development of Chronic Enterocolitis in Mice Devoid of Stat3 in Macrophages and Neutrophils. Immunity, 1999, 10, 39-49.	6.6	1,160
40	Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Medicine, 2005, 11, 263-270.	15.2	1,153
41	Cutting Edge: A Novel Toll/IL-1 Receptor Domain-Containing Adapter That Preferentially Activates the IFN-β Promoter in the Toll-Like Receptor Signaling. Journal of Immunology, 2002, 169, 6668-6672.	0.4	1,123
42	Discrimination of bacterial lipoproteins by Toll-like receptor 6. International Immunology, 2001, 13, 933-940.	1.8	1,112
43	TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nature Immunology, 2008, 9, 361-368.	7.0	1,071
44	Toll-like Receptor 9–mediated Recognition of Herpes Simplex Virus-2 by Plasmacytoid Dendritic Cells. Journal of Experimental Medicine, 2003, 198, 513-520.	4.2	1,064
45	Innate immunity to virus infection. Immunological Reviews, 2009, 227, 75-86.	2.8	1,053
46	Recognition of pathogen-associated molecular patterns by TLR family. Immunology Letters, 2003, 85, 85-95.	1.1	1,016
47	Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature, 2006, 440, 233-236.	13.7	1,016
48	The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nature Immunology, 2010, 11, 936-944.	7.0	996
49	Toll-like receptors and innate immunity. Biochemical and Biophysical Research Communications, 2009, 388, 621-625.	1.0	988
50	Lipopolysaccharide Stimulates the MyD88-Independent Pathway and Results in Activation of IFN-Regulatory Factor 3 and the Expression of a Subset of Lipopolysaccharide-Inducible Genes. Journal of Immunology, 2001, 167, 5887-5894.	0.4	986
51	Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell, 1994, 77, 63-71.	13.5	984
52	Cutting Edge: TLR2-Deficient and MyD88-Deficient Mice Are Highly Susceptible to <i>Staphylococcus aureus</i> Infection. Journal of Immunology, 2000, 165, 5392-5396.	0.4	983
53	Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nature Immunology, 2002, 3, 667-672.	7.0	940
54	TRAM is specifically involved in the Toll-like receptor 4–mediated MyD88-independent signaling pathway. Nature Immunology, 2003, 4, 1144-1150.	7.0	919

#	Article	IF	CITATIONS
55	Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature, 2002, 420, 324-329.	13.7	910
56	Distinct RIG-I and MDA5 Signaling by RNA Viruses in Innate Immunity. Journal of Virology, 2008, 82, 335-345.	1.5	897
57	Interferon- \hat{I}_{\pm} induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nature Immunology, 2004, 5, 1061-1068.	7.0	894
58	Defective NK Cell Activity and Th1 Response in IL-18–Deficient Mice. Immunity, 1998, 8, 383-390.	6.6	858
59	Tollâ€like Receptor and RIGâ€1â€like Receptor Signaling. Annals of the New York Academy of Sciences, 2008, 1143, 1-20.	1.8	842
60	Essential function for the kinase TAK1 in innate and adaptive immune responses. Nature Immunology, 2005, 6, 1087-1095.	7.0	839
61	Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. Journal of Experimental Medicine, 2005, 202, 1131-1139.	4.2	806
62	Toll-like receptor function and signaling. Journal of Allergy and Clinical Immunology, 2006, 117, 979-987.	1.5	766
63	Toll-like Receptor Signaling. Journal of Biological Chemistry, 2003, 278, 38105-38108.	1.6	741
64	IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nature Immunology, 2003, 4, 551-556.	7.0	706
65	A Toll-like receptor–independent antiviral response induced by double-stranded B-form DNA. Nature Immunology, 2006, 7, 40-48.	7.0	704
66	Cutting Edge: Endotoxin Tolerance in Mouse Peritoneal Macrophages Correlates with Down-Regulation of Surface Toll-Like Receptor 4 Expression. Journal of Immunology, 2000, 164, 3476-3479.	0.4	700
67	Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. Journal of Experimental Medicine, 2009, 206, 2879-2888.	4.2	670
68	Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nature Immunology, 2008, 9, 769-776.	7.0	668
69	Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 582-587.	3.3	667
70	Recognition of 5′ Triphosphate by RIG-I Helicase Requires Short Blunt Double-Stranded RNA as Contained in Panhandle of Negative-Strand Virus. Immunity, 2009, 31, 25-34.	6.6	660
71	Toll-like receptor 2 controls expansion and function of regulatory T cells. Journal of Clinical Investigation, 2006, 116, 485-494.	3.9	658
72	TLR9-Dependent Recognition of MCMV by IPC and DC Generates Coordinated Cytokine Responses that Activate Antiviral NK Cell Function. Immunity, 2004, 21, 107-119.	6.6	644

#	Article	IF	CITATIONS
73	TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes and Development, 2005, 19, 2668-2681.	2.7	632
74	Toll/IL-1 Receptor Domain-Containing Adaptor Inducing IFN-Î ² (TRIF) Associates with TNF Receptor-Associated Factor 6 and TANK-Binding Kinase 1, and Activates Two Distinct Transcription Factors, NF-Î [®] B and IFN-Regulatory Factor-3, in the Toll-Like Receptor Signaling. Journal of Immunology, 2003, 171, 4304-4310.	0.4	629
75	Induction of Direct Antimicrobial Activity Through Mammalian Toll-Like Receptors. Science, 2001, 291, 1544-1547.	6.0	623
76	Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood, 2004, 103, 1433-1437.	0.6	606
77	HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature, 2009, 462, 99-103.	13.7	602
78	Limb and Skin Abnormalities in Mice Lacking IKK. Science, 1999, 284, 313-316.	6.0	595
79	The S100A8–serum amyloid A3–TLR4 paracrine cascade establishes a pre-metastatic phase. Nature Cell Biology, 2008, 10, 1349-1355.	4.6	595
80	SOCS-1 Participates in Negative Regulation of LPS Responses. Immunity, 2002, 17, 677-687.	6.6	583
81	Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature, 2009, 458, 1185-1190.	13.7	557
82	TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature, 2008, 451, 725-729.	13.7	551
83	Cutting Edge: Preferentially the <i>R</i> -Stereoisomer of the Mycoplasmal Lipopeptide Macrophage-Activating Lipopeptide-2 Activates Immune Cells Through a Toll-Like Receptor 2- and MyD88-Dependent Signaling Pathway. Journal of Immunology, 2000, 164, 554-557.	0.4	550
84	Quantitative Proteomics Reveals Subset-Specific Viral Recognition in Dendritic Cells. Immunity, 2010, 32, 279-289.	6.6	544
85	LGP2 is a positive regulator of RIG-l– and MDA5-mediated antiviral responses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1512-1517.	3.3	540
86	Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. Journal of Experimental Medicine, 2005, 201, 19-25.	4.2	537
87	The Roles of Two lκB Kinase-related Kinases in Lipopolysaccharide and Double Stranded RNA Signaling and Viral Infection. Journal of Experimental Medicine, 2004, 199, 1641-1650.	4.2	536
88	Mammalian Toll-like receptors. Current Opinion in Immunology, 2003, 15, 5-11.	2.4	527
89	The RNA Helicase Lgp2 Inhibits TLR-Independent Sensing of Viral Replication by Retinoic Acid-Inducible Gene-I. Journal of Immunology, 2005, 175, 5260-5268.	0.4	517
90	The Atg5–Atg12 conjugate associates with innate antiviral immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14050-14055.	3.3	517

#	Article	IF	CITATIONS
91	Activation of Toll-Like Receptor-2 by Glycosylphosphatidylinositol Anchors from a Protozoan Parasite. Journal of Immunology, 2001, 167, 416-423.	0.4	513
92	Pathogen recognition with Toll-like receptors. Current Opinion in Immunology, 2005, 17, 338-344.	2.4	503
93	MDA5/RIG-I and virus recognition. Current Opinion in Immunology, 2008, 20, 17-22.	2.4	501
94	Pathogen recognition in the innate immune response. Biochemical Journal, 2009, 420, 1-16.	1.7	497
95	IL-6 and NF-IL6 in Acute-Phase Response and Viral Infection. Immunological Reviews, 1992, 127, 25-50.	2.8	496
96	The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. European Journal of Immunology, 2003, 33, 2987-2997.	1.6	487
97	DNA released from dying host cells mediates aluminum adjuvant activity. Nature Medicine, 2011, 17, 996-1002.	15.2	482
98	Toll-like Receptor 9–Dependent and –Independent Dendritic Cell Activation by Chromatin–Immunoglobulin G Complexes. Journal of Experimental Medicine, 2004, 199, 1631-1640.	4.2	476
99	Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. Journal of Experimental Medicine, 2006, 203, 413-424.	4.2	474
100	Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. Journal of Clinical Investigation, 2008, 118, 205-216.	3.9	450
101	Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science, 2014, 345, 1254009.	6.0	450
102	Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-1± induction. Journal of Experimental Medicine, 2005, 201, 915-923.	4.2	446
103	Endotoxin-Induced Maturation of MyD88-Deficient Dendritic Cells. Journal of Immunology, 2001, 166, 5688-5694.	0.4	445
104	Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein lκBζ. Nature, 2004, 430, 218-222.	13.7	445
105	Host Innate Immune Receptors and Beyond: Making Sense of Microbial Infections. Cell Host and Microbe, 2008, 3, 352-363.	5.1	439
106	Essential role of IPS-1 in innate immune responses against RNA viruses. Journal of Experimental Medicine, 2006, 203, 1795-1803.	4.2	438
107	Electrophilic properties of itaconate and derivatives regulate theÂlîºBî¶â€"ATF3 inflammatory axis. Nature, 2018, 556, 501-504	13.7	438
108	Induction of Proinflammatory Responses in Macrophages by the Glycosylphosphatidylinositols of Plasmodium falciparum. Journal of Biological Chemistry, 2005, 280, 8606-8616.	1.6	437

#	Article	IF	CITATIONS
109	Immune Cell Activation by Bacterial Cpg-DNA through Myeloid Differentiation Marker 88 and Tumor Necrosis Factor Receptor–Associated Factor (Traf)6. Journal of Experimental Medicine, 2000, 192, 595-600.	4.2	434
110	Interferon-α and Interleukin-12 Are Induced Differentially by Toll-like Receptor 7 Ligands in Human Blood Dendritic Cell Subsets. Journal of Experimental Medicine, 2002, 195, 1507-1512.	4.2	434
111	Toll-like Receptors and Type I Interferons. Journal of Biological Chemistry, 2007, 282, 15319-15323.	1.6	434
112	A Toll-Like Receptor 2 Ligand Stimulates Th2 Responses In Vivo, via Induction of Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase and c-Fos in Dendritic Cells. Journal of Immunology, 2004, 172, 4733-4743.	0.4	415
113	Toll-like receptors as adjuvant receptors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1589, 1-13.	1.9	408
114	MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. Journal of Clinical Investigation, 2006, 116, 2262-2271.	3.9	402
115	The Ubiquitin Ligase TRIM56 Regulates Innate Immune Responses to Intracellular Double-Stranded DNA. Immunity, 2010, 33, 765-776.	6.6	400
116	Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nature Immunology, 2006, 7, 868-874.	7.0	399
117	Antiviral Signaling Through Pattern Recognition Receptors. Journal of Biochemistry, 2006, 141, 137-145.	0.9	398
118	Maturation of Human Dendritic Cells by Cell Wall Skeleton of Mycobacterium bovis Bacillus Calmette-Guelrin: Involvement of Toll-Like Receptors. Infection and Immunity, 2000, 68, 6883-6890.	1.0	381
119	Dissecting negative regulation of Toll-like receptor signaling. Trends in Immunology, 2012, 33, 449-458.	2.9	378
120	Toll-like receptors and innate immunity. Journal of Molecular Medicine, 2006, 84, 712-725.	1.7	377
121	IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. Journal of Clinical Investigation, 2007, 117, 3786-99.	3.9	374
122	Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. Journal of Clinical Investigation, 2002, 109, 1351-1359.	3.9	370
123	Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature, 2007, 448, 929-933.	13.7	369
124	CD11b/CD18 Acts in Concert with CD14 and Toll-Like Receptor (TLR) 4 to Elicit Full Lipopolysaccharide and Taxol-Inducible Gene Expression. Journal of Immunology, 2001, 166, 574-581.	0.4	368
125	Synergy and Cross-Tolerance Between Toll-Like Receptor (TLR) 2- and TLR4-Mediated Signaling Pathways. Journal of Immunology, 2000, 165, 7096-7101.	0.4	367
126	Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nature Immunology, 2006, 7, 1066-1073.	7.0	364

#	Article	IF	CITATIONS
127	Sequential control of Toll-like receptor–dependent responses by IRAK1 and IRAK2. Nature Immunology, 2008, 9, 684-691.	7.0	361
128	Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nature Medicine, 2005, 11, 138-145.	15.2	356
129	Dendritic-cell function in Toll-like receptor- and MyD88-knockout mice. Trends in Immunology, 2001, 22, 78-83.	2.9	342
130	The role of IL-18 in innate immunity. Current Opinion in Immunology, 2000, 12, 59-63.	2.4	340
131	Alveolar Macrophages Are the Primary Interferon- $\hat{I}\pm$ Producer in Pulmonary Infection with RNA Viruses. Immunity, 2007, 27, 240-252.	6.6	340
132	Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature, 2014, 514, 513-517.	13.7	340
133	Selective contribution of IFN-Â/Â signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10872-10877.	3.3	337
134	Toll-like receptor–mediated regulation of zinc homeostasis influences dendritic cell function. Nature Immunology, 2006, 7, 971-977.	7.0	326
135	lκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9. Nature, 2006, 440, 949-953.	13.7	325
136	Tollâ€Like Receptors. Current Protocols in Immunology, 2015, 109, 14.12.1-14.12.10.	3.6	324
137	The Roles of Toll-Like Receptor 9, MyD88, and DNA-Dependent Protein Kinase Catalytic Subunit in the Effects of Two Distinct CpG DNAs on Dendritic Cell Subsets. Journal of Immunology, 2003, 170, 3059-3064.	0.4	320
138	Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nature Medicine, 2003, 9, 525-532.	15.2	311
139	Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells. Nature Immunology, 2009, 10, 587-594.	7.0	308
140	Recognition of viruses by innate immunity. Immunological Reviews, 2007, 220, 214-224.	2.8	305
141	Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe <i>Acinetobacter lwoffii</i> F78. Journal of Experimental Medicine, 2009, 206, 2869-2877.	4.2	301
142	Viral Infections Activate Types I and III Interferon Genes through a Common Mechanism. Journal of Biological Chemistry, 2007, 282, 7576-7581.	1.6	300
143	Malt1-Induced Cleavage of Regnase-1 in CD4+ Helper T Cells Regulates Immune Activation. Cell, 2013, 153, 1036-1049.	13.5	296
144	Regnase-1 and Roquin Regulate a Common Element in Inflammatory mRNAs by Spatiotemporally Distinct Mechanisms. Cell, 2015, 161, 1058-1073.	13.5	296

#	Article	IF	CITATIONS
145	Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. International Immunology, 2000, 12, 113-117.	1.8	291
146	Toll-like Receptors and Innate Immunity. Advances in Immunology, 2001, 78, 1-56.	1.1	290
147	Microbial Sensing by Toll-Like Receptors and Intracellular Nucleic Acid Sensors. Cold Spring Harbor Perspectives in Biology, 2015, 7, a016246.	2.3	288
148	Innate Immune Sensing of Modified Vaccinia Virus Ankara (MVA) Is Mediated by TLR2-TLR6, MDA-5 and the NALP3 Inflammasome. PLoS Pathogens, 2009, 5, e1000480.	2.1	285
149	Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature, 2013, 495, 524-528.	13.7	285
150	Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells. FEBS Letters, 1996, 395, 143-147.	1.3	282
151	Negative regulation of interferon-regulatory factor 3–dependent innate antiviral response by the prolyl isomerase Pin1. Nature Immunology, 2006, 7, 598-605.	7.0	280
152	Recognition of Profilin by Toll-like Receptor 12 Is Critical for Host Resistance to Toxoplasma gondii. Immunity, 2013, 38, 119-130.	6.6	279
153	Toll-Like Receptor-2 Modulates Ventricular Remodeling After Myocardial Infarction. Circulation, 2003, 108, 2905-2910.	1.6	277
154	CpG directly induces T-bet expression and inhibits IgG1 and IgE switching in B cells. Nature Immunology, 2003, 4, 687-693.	7.0	275
155	A Subset of Toll-Like Receptor Ligands Induces Cross-presentation by Bone Marrow-Derived Dendritic Cells. Journal of Immunology, 2003, 170, 4102-4110.	0.4	273
156	Differential Role of TLR- and RLR-Signaling in the Immune Responses to Influenza A Virus Infection and Vaccination. Journal of Immunology, 2007, 179, 4711-4720.	0.4	271
157	Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 652-656.	3.3	270
158	A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. Journal of Experimental Medicine, 2009, 206, 1899-1911.	4.2	267
159	Critical Roles of Myeloid Differentiation Factor 88-Dependent Proinflammatory Cytokine Release in Early Phase Clearance of <i>Listeria monocytogenes</i> in Mice. Journal of Immunology, 2002, 169, 3863-3868.	0.4	265
160	Toll receptors and pathogen resistance. Cellular Microbiology, 2003, 5, 143-153.	1.1	265
161	Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. Journal of Clinical Investigation, 2003, 111, 1571-1578.	3.9	265
162	Differential involvement of IFN-Â in Toll-like receptor-stimulated dendritic cell activation. International Immunology, 2002, 14, 1225-1231.	1.8	264

#	Article	IF	CITATIONS
163	Macrophages and Myeloid Dendritic Cells, but Not Plasmacytoid Dendritic Cells, Produce IL-10 in Response to MyD88- and TRIF-Dependent TLR Signals, and TLR-Independent Signals. Journal of Immunology, 2006, 177, 7551-7558.	0.4	263
164	The lκB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR–IL-1R by controlling degradation of regnase-1. Nature Immunology, 2011, 12, 1167-1175.	7.0	261
165	The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. European Journal of Immunology, 2001, 31, 2448-2457.	1.6	254
166	Toll-like receptor–independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. Journal of Experimental Medicine, 2005, 202, 1333-1339.	4.2	254
167	Protection from lethal Gram-negative bacterial sepsis by targeting Toll-like receptor 4. Proceedings of the United States of America, 2009, 106, 2348-2352.	3.3	252
168	Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature, 2017, 541, 96-101.	13.7	250
169	Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nature Immunology, 2006, 7, 962-970.	7.0	249
170	Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 844-849.	3.3	247
171	Malaria Blood Stage Parasites Activate Human Plasmacytoid Dendritic Cells and Murine Dendritic Cells through a Toll-Like Receptor 9-Dependent Pathway. Journal of Immunology, 2004, 172, 4926-4933.	0.4	245
172	Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. European Journal of Immunology, 2006, 36, 3256-3267.	1.6	242
173	IL-18 contributes to the spontaneous development of atopic dermatitis-like inflammatory skin lesion independently of IgE/stat6 under specific pathogen-free conditions. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11340-11345.	3.3	241
174	The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6299-6304.	3.3	238
175	Toll-like Receptors and Their Signaling Mechanisms. Scandinavian Journal of Infectious Diseases, 2003, 35, 555-562.	1.5	237
176	Adiponectin Enhances Insulin Sensitivity by Increasing Hepatic IRS-2 Expression via a Macrophage-Derived IL-6-Dependent Pathway. Cell Metabolism, 2011, 13, 401-412.	7.2	236
177	Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Current Biology, 2000, 10, 1139-1142.	1.8	235
178	Microbial recognition by Toll-like receptors. Journal of Dermatological Science, 2004, 34, 73-82.	1.0	235
179	Toll-like Receptor 7-Dependent Loss of B Cell Tolerance in Pathogenic Autoantibody Knockin Mice. Immunity, 2006, 25, 429-440.	6.6	231
180	Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice. Journal of Clinical Investigation, 2003, 111, 1297-1308.	3.9	225

#	Article	IF	CITATIONS
181	Akirins are highly conserved nuclear proteins required for NF-κB-dependent gene expression in drosophila and mice. Nature Immunology, 2008, 9, 97-104.	7.0	223
182	Alveolar macrophage–derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes. Journal of Experimental Medicine, 2015, 212, 699-714.	4.2	223
183	Roles of Toll-like receptors in innate immune responses. Genes To Cells, 2001, 6, 733-742.	0.5	222
184	Lipopolysaccharide-Induced IL-18 Secretion from Murine Kupffer Cells Independently of Myeloid Differentiation Factor 88 That Is Critically Involved in Induction of Production of IL-12 and IL-1β. Journal of Immunology, 2001, 166, 2651-2657.	0.4	222
185	Toll-Like Receptor Signaling and Its Inducible Proteins. Microbiology Spectrum, 2016, 4, .	1.2	220
186	IL-6-regulated transcription factors. International Journal of Biochemistry and Cell Biology, 1997, 29, 1401-1418.	1.2	219
187	DNA-Containing Exosomes Derived from Cancer Cells Treated with Topotecan Activate a STING-Dependent Pathway and Reinforce Antitumor Immunity. Journal of Immunology, 2017, 198, 1649-1659.	0.4	219
188	Toll-like receptor downstream signaling. Arthritis Research, 2005, 7, 12.	2.0	217
189	TLR1- and TLR6-independent Recognition of Bacterial Lipopeptides. Journal of Biological Chemistry, 2006, 281, 9049-9057.	1.6	216
190	Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. Journal of Clinical Investigation, 2002, 109, 1351-1359.	3.9	211
191	Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nature Communications, 2017, 8, 359.	5.8	210
192	Involvement of the Toll-Like Receptor 9 Signaling Pathway in the Induction of Innate Immunity by Baculovirus. Journal of Virology, 2005, 79, 2847-2858.	1.5	209
193	<i>KLB</i> is associated with alcohol drinking, and its gene product β-Klotho is necessary for FGF21 regulation of alcohol preference. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14372-14377.	3.3	208
194	Microbial Recognition Via Toll-Like Receptor-Dependent and -Independent Pathways Determines the Cytokine Response of Murine Dendritic Cell Subsets to CD40 Triggering. Journal of Immunology, 2002, 169, 3652-3660.	0.4	201
195	Innate immune recognition of, and regulation by, DNA. Trends in Immunology, 2006, 27, 525-532.	2.9	200
196	Toll-Like Receptor 2 Pathway Drives Streptococcal Cell Wall-Induced Joint Inflammation: Critical Role of Myeloid Differentiation Factor 88. Journal of Immunology, 2003, 171, 6145-6153.	0.4	199
197	Antiviral Protein Viperin Promotes Toll-like Receptor 7- and Toll-like Receptor 9-Mediated Type I Interferon Production in Plasmacytoid Dendritic Cells. Immunity, 2011, 34, 352-363.	6.6	199
198	Silica Crystals and Aluminum Salts Regulate the Production of Prostaglandin in Macrophages via NALP3 Inflammasome-Independent Mechanisms. Immunity, 2011, 34, 514-526.	6.6	199

#	Article	IF	CITATIONS
199	IFN Regulatory Factor 3-Dependent Induction of Type I IFNs by Intracellular Bacteria Is Mediated by a TLR- and Nod2-Independent Mechanism. Journal of Immunology, 2004, 173, 7416-7425.	0.4	195
200	NF-IL6 and NF-κB in Cytokine Gene Regulation. Advances in Immunology, 1997, 65, 1-46.	1.1	194
201	Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4–dependent mechanism. Journal of Clinical Investigation, 2005, 115, 468-475.	3.9	193
202	Pathogen recognition by innate immunity and its signaling. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2009, 85, 143-156.	1.6	191
203	Toll-like Receptor 2 Senses β-Cell Death and Contributes to the Initiation of Autoimmune Diabetes. Immunity, 2007, 27, 321-333.	6.6	190
204	Sequential MyD88-Independent and -Dependent Activation of Innate Immune Responses to Intracellular Bacterial Infection. Immunity, 2003, 19, 891-901.	6.6	188
205	Pathogen recognition by innate receptors. Journal of Infection and Chemotherapy, 2008, 14, 86-92.	0.8	187
206	<i>Plasmodium</i> â€^ <i>berghei</i> Infection in Mice Induces Liver Injury by an IL-12- and Toll-Like Receptor/Myeloid Differentiation Factor 88-Dependent Mechanism. Journal of Immunology, 2001, 167, 5928-5934.	0.4	186
207	MyD88-Dependent and -Independent Murine Cytomegalovirus Sensing for IFN-α Release and Initiation of Immune Responses In Vivo. Journal of Immunology, 2005, 175, 6723-6732.	0.4	186
208	Toll‣ike Receptors. Current Protocols in Immunology, 2007, 77, Unit 14.12.	3.6	183
209	Macrophage-derived IL-18–mediated intestinal inflammation in the murine model of Crohn's disease. Gastroenterology, 2001, 121, 875-888.	0.6	182
210	Recognition of nucleic acids by patternâ€recognition receptors and its relevance in autoimmunity. Immunological Reviews, 2011, 243, 61-73.	2.8	181
211	Toll-like receptor 6-independent signaling by diacylated lipopeptides. European Journal of Immunology, 2005, 35, 282-289.	1.6	179
212	The Parasitophorous Vacuole Membrane of Toxoplasma gondii Is Targeted for Disruption by Ubiquitin-like Conjugation Systems of Autophagy. Immunity, 2014, 40, 924-935.	6.6	179
213	Endotoxin can induce MyD88-deficient dendritic cells to support Th2 cell differentiation. International Immunology, 2002, 14, 695-700.	1.8	176
214	Double-Stranded RNA of Intestinal Commensal but Not Pathogenic Bacteria Triggers Production of Protective Interferon-β. Immunity, 2013, 38, 1187-1197.	6.6	176
215	The Nuclear lήB Protein lήBNS Selectively Inhibits Lipopolysaccharide-Induced IL-6 Production in Macrophages of the Colonic Lamina Propria. Journal of Immunology, 2005, 174, 3650-3657.	0.4	172
216	TLR2 engagement on CD8 T cells lowers the thresholdfor optimal antigen-induced T cell activation. European Journal of Immunology, 2006, 36, 1684-1693.	1.6	172

#	Article	IF	CITATIONS
217	Cutting Edge: <i>Tlr5</i> â^'/â^' Mice Are More Susceptible to <i>Escherichia coli</i> Urinary Tract Infection. Journal of Immunology, 2007, 178, 4717-4720.	0.4	172
218	Genetic analysis of resistance to viral infection. Nature Reviews Immunology, 2007, 7, 753-766.	10.6	172
219	Identification and functions of pattern-recognition receptors. Journal of Allergy and Clinical Immunology, 2010, 125, 985-992.	1.5	172
220	A20 Is a Negative Regulator of IFN Regulatory Factor 3 Signaling. Journal of Immunology, 2005, 174, 1507-1512.	0.4	170
221	ASC is essential for LPS-induced activation of procaspase-1 independently of TLR-associated signal adaptor molecules. Genes To Cells, 2004, 9, 1055-1067.	0.5	169
222	Functions of Toll-like receptors: lessons from KO mice. Comptes Rendus - Biologies, 2004, 327, 581-589.	0.1	168
223	Differential Roles of CD14 and Toll-like Receptors 4and 2 in MurineAcinetobacterPneumonia. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 122-129.	2.5	166
224	Toll-Like Receptor 2 Is Required for Optimal Control of Listeria monocytogenes Infection. Infection and Immunity, 2004, 72, 2131-2139.	1.0	165
225	Activation of TBK1 and IKKε Kinases by Vesicular Stomatitis Virus Infection and the Role of Viral Ribonucleoprotein in the Development of Interferon Antiviral Immunity. Journal of Virology, 2004, 78, 10636-10649.	1.5	164
226	Myeloid Differentiation Factor-88 Plays a Crucial Role in the Pathogenesis of Coxsackievirus B3–Induced Myocarditis and Influences Type I Interferon Production. Circulation, 2005, 112, 2276-2285.	1.6	163
227	Cutting Edge: Roles of Caspase-8 and Caspase-10 in Innate Immune Responses to Double-Stranded RNA. Journal of Immunology, 2006, 176, 4520-4524.	0.4	161
228	Mycobacterial Infection in TLR2 and TLR6 Knockout Mice. Microbiology and Immunology, 2003, 47, 327-336.	0.7	160
229	Essential role of IRAK-4 protein and its kinase activity in Toll-like receptor–mediated immune responses but not in TCR signaling. Journal of Experimental Medicine, 2007, 204, 1013-1024.	4.2	158
230	Contribution of Toll-like receptor/myeloid differentiation factor 88 signaling to murine liver regeneration. Hepatology, 2005, 41, 443-450.	3.6	157
231	Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: Implications for vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16260-16265.	3.3	155
232	STAT3-dependent reactive astrogliosis in the spinal dorsal horn underlies chronic itch. Nature Medicine, 2015, 21, 927-931.	15.2	154
233	A variety of microbial components induce tolerance to lipopolysaccharide by differentially affecting MyD88-dependent and -independent pathways. International Immunology, 2002, 14, 783-791.	1.8	153
234	Suppressor of cytokine signaling-1 selectively inhibits LPS-induced IL-6 production by regulating JAK-STAT. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17089-17094.	3.3	152

#	Article	IF	CITATIONS
235	Hepatitis C Virus Nonstructural Protein 5A Modulates the Toll-Like Receptor-MyD88-Dependent Signaling Pathway in Macrophage Cell Lines. Journal of Virology, 2007, 81, 8953-8966.	1.5	151
236	Immunoprivileged status of the liver is controlled by Toll-like receptor 3 signaling. Journal of Clinical Investigation, 2006, 116, 2456-2463.	3.9	150
237	Toll-Like Receptors (TLRs) and Their Ligands. Handbook of Experimental Pharmacology, 2008, , 1-20.	0.9	149
238	TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nature Immunology, 2009, 10, 965-972.	7.0	148
239	Regulation of Dendritic Cell Function Through Toll-Like Receptors. Current Molecular Medicine, 2003, 3, 759-771.	0.6	147
240	Toll or Toll-Free Adjuvant Path Toward the Optimal Vaccine Development. Journal of Clinical Immunology, 2007, 27, 363-371.	2.0	146
241	Involvement of the NLRP3 Inflammasome in Innate and Humoral Adaptive Immune Responses to Fungal β-Glucan. Journal of Immunology, 2009, 183, 8061-8067.	0.4	146
242	Glucocorticoids Synergistically Enhance NontypeableHaemophilus influenzae-induced Toll-like Receptor 2 Expression via a Negative Cross-talk with p38 MAP Kinase. Journal of Biological Chemistry, 2002, 277, 17263-17270.	1.6	145
243	B cells enhance early innate immune responses during bacterial sepsis. Journal of Experimental Medicine, 2011, 208, 1673-1682.	4.2	144
244	Innate and adaptive immune responses to viral infection and vaccination. Current Opinion in Virology, 2011, 1, 226-232.	2.6	143
245	Regulation of inflammasomes by autophagy. Journal of Allergy and Clinical Immunology, 2016, 138, 28-36.	1.5	143
246	Lipopolysaccharides fromLegionellaandRhizobiumstimulate mouse bone marrow granulocytes via Toll-like receptor 2. Journal of Cell Science, 2003, 116, 293-302.	1.2	142
247	Natural killer cell and macrophage cooperation in MyD88-dependent innate responses to Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14747-14752.	3.3	141
248	The MyD88-Dependent, but Not the MyD88-Independent, Pathway of TLR4 Signaling Is Important in Clearing Nontypeable <i>Haemophilus influenzae</i> from the Mouse Lung. Journal of Immunology, 2005, 175, 6042-6049.	0.4	141
249	Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs. Oncotarget, 2016, 7, 26496-26515.	0.8	141
250	Toll-like Receptor 3 and STAT-1 Contribute to Double-stranded RNA+ Interferon-Î ³ -induced Apoptosis in Primary Pancreatic β-Cells. Journal of Biological Chemistry, 2005, 280, 33984-33991.	1.6	140
251	Polyubiquitin conjugation to NEMO by triparite motif protein 23 (TRIM23) is critical in antiviral defense. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15856-15861.	3.3	140
252	Cutting Edge: Cooperation of IPS-1- and TRIF-Dependent Pathways in Poly IC-Enhanced Antibody Production and Cytotoxic T Cell Responses. Journal of Immunology, 2008, 180, 683-687.	0.4	139

#	Article	IF	CITATIONS
253	Genetic variations of Toll-like receptor 9 predispose to systemic lupus erythematosus in Japanese population. Annals of the Rheumatic Diseases, 2007, 66, 905-909.	O.5	138
254	The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication. Science Signaling, 2015, 8, ra126.	1.6	138
255	The chemotherapeutic agent DMXAA potently and specifically activates the TBK1–IRF-3 signaling axis. Journal of Experimental Medicine, 2007, 204, 1559-1569.	4.2	137
256	Protein Kinase R Contributes to Immunity against Specific Viruses by Regulating Interferon mRNA Integrity. Cell Host and Microbe, 2010, 7, 354-361.	5.1	137
257	TAK1 Is a Master Regulator of Epidermal Homeostasis Involving Skin Inflammation and Apoptosis. Journal of Biological Chemistry, 2006, 281, 19610-19617.	1.6	136
258	Enterocyte-Derived TAK1 Signaling Prevents Epithelium Apoptosis and the Development of Ileitis and Colitis. Journal of Immunology, 2008, 181, 1143-1152.	0.4	136
259	Novel Engagement of CD14 and Multiple Toll-Like Receptors by Group B Streptococci. Journal of Immunology, 2001, 167, 7069-7076.	0.4	135
260	Immunogenicity of Whole-Parasite Vaccines against Plasmodium falciparum Involves Malarial Hemozoin and Host TLR9. Cell Host and Microbe, 2010, 7, 50-61.	5.1	135
261	Induction of CXCL5 During Inflammation in the Rodent Lung Involves Activation of Alveolar Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 531-539.	1.4	134
262	Toll-like receptor 2 modulates left ventricular function following ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H503-H509.	1.5	134
263	Autophagy Regulation of Metabolism Is Required for CD8+ T Cell Anti-tumor Immunity. Cell Reports, 2019, 27, 502-513.e5.	2.9	134
264	MyD88 Primes Macrophages for Full-Scale Activation by Interferon-Î ³ yet Mediates Few Responses to Mycobacterium tuberculosis. Journal of Experimental Medicine, 2003, 198, 987-997.	4.2	133
265	MyD88 Plays a Unique Role in Host Defense but Not Arthritis Development in Lyme Disease. Journal of Immunology, 2004, 173, 2003-2010.	0.4	133
266	Cytosolic Double-Stranded RNA Activates the NLRP3 Inflammasome via MAVS-Induced Membrane Permeabilization and K+ Efflux. Journal of Immunology, 2014, 193, 4214-4222.	0.4	132
267	Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4–dependent mechanism. Journal of Clinical Investigation, 2005, 115, 468-475.	3.9	131
268	Autophagy limits activation of the inflammasomes. Immunological Reviews, 2018, 281, 62-73.	2.8	129
269	Inhibition of p38 MAPK by Glucocorticoids via Induction of MAPK Phosphatase-1 Enhances Nontypeable Haemophilus influenzae-induced Expression of Toll-like Receptor 2. Journal of Biological Chemistry, 2002, 277, 47444-47450.	1.6	128
270	Myeloid Differentiation Factor 88–Dependent and –Independent Pathways in Tollâ€Like Receptor Signaling. Journal of Infectious Diseases, 2003, 187, S356-S363.	1.9	128

#	Article	IF	CITATIONS
271	RAE1 Ligands for the NKG2D Receptor Are Regulated by STING-Dependent DNA Sensor Pathways in Lymphoma. Cancer Research, 2014, 74, 2193-2203.	0.4	127
272	Role of Lipoteichoic Acid in the Phagocyte Response to Group B <i>Streptococcus</i> . Journal of Immunology, 2005, 174, 6449-6455.	0.4	125
273	The Triacylated ATP Binding Cluster Transporter Substrate-binding Lipoprotein of Staphylococcus aureus Functions as a Native Ligand for Toll-like Receptor 2. Journal of Biological Chemistry, 2009, 284, 8406-8411.	1.6	125
274	Innate immunity and adjuvants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2748-2755.	1.8	125
275	Plasmacytoid Dendritic Cells Delineate Immunogenicity of Influenza Vaccine Subtypes. Science Translational Medicine, 2010, 2, 25ra24.	5.8	124
276	Regulation of lipopolysaccharide-inducible genes by MyD88 and Toll/IL-1 domain containing adaptor inducing IFN-1². Biochemical and Biophysical Research Communications, 2005, 328, 383-392.	1.0	123
277	MyD88 But Not TRIF Is Essential for Osteoclastogenesis Induced by Lipopolysaccharide, Diacyl Lipopeptide, and IL-11±. Journal of Experimental Medicine, 2004, 200, 601-611.	4.2	122
278	Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. Journal of Clinical Investigation, 2003, 111, 1571-1578.	3.9	120
279	Blockade of TLR3 protects mice from lethal radiation-induced gastrointestinal syndrome. Nature Communications, 2014, 5, 3492.	5.8	119
280	NF-ÂB activation by the Toll-IL-1 receptor domain protein MyD88 adapter-like is regulated by caspase-1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3372-3377.	3.3	118
281	Noninvasive detection of macrophage activation with single-cell resolution through machine learning. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2676-E2685.	3.3	117
282	Pleiotropic function of Toll-like receptors. Microbes and Infection, 2004, 6, 1388-1394.	1.0	116
283	Early type I interferon-mediated signals on B cells specifically enhance antiviral humoral responses. European Journal of Immunology, 2006, 36, 2094-2105.	1.6	116
284	Liposome-Encapsulated CpC Oligodeoxynucleotides as a Potent Adjuvant for Inducing Type 1 Innate Immunity. Cancer Research, 2004, 64, 8754-8760.	0.4	115
285	TAB2 Is Essential for Prevention of Apoptosis in Fetal Liver but Not for Interleukin-1 Signaling. Molecular and Cellular Biology, 2003, 23, 1231-1238.	1.1	114
286	Differential Role of MyD88 in Macrophage-Mediated Responses to Opportunistic Fungal Pathogens. Infection and Immunity, 2003, 71, 5280-5286.	1.0	114
287	Cutting Edge: Bacterial Infection Induces Hematopoietic Stem and Progenitor Cell Expansion in the Absence of TLR Signaling. Journal of Immunology, 2010, 184, 2247-2251.	0.4	112
288	Cell activation by Porphyromonas gingivalis lipid A molecule through Toll-like receptor 4- and myeloid differentiation factor 88-dependent signaling pathway. International Immunology, 2002, 14, 1325-1332.	1.8	111

#	Article	IF	CITATIONS
289	Influenza A Virus Polymerase Inhibits Type I Interferon Induction by Binding to Interferon β Promoter Stimulator 1. Journal of Biological Chemistry, 2010, 285, 32064-32074.	1.6	111
290	Membrane-Bound Prostaglandin E Synthase-1-Mediated Prostaglandin E2 Production by Osteoblast Plays a Critical Role in Lipopolysaccharide-Induced Bone Loss Associated with Inflammation. Journal of Immunology, 2006, 177, 1879-1885.	0.4	110
291	Lymphocytoid Choriomeningitis Virus Activates Plasmacytoid Dendritic Cells and Induces a Cytotoxic T-Cell Response via MyD88. Journal of Virology, 2008, 82, 196-206.	1.5	110
292	Akt Contributes to Activation of the TRIF-Dependent Signaling Pathways of TLRs by Interacting with TANK-Binding Kinase 1. Journal of Immunology, 2011, 186, 499-507.	0.4	109
293	Involvement of the ubiquitin-like domain of TBK1/IKK-i kinases in regulation of IFN-inducible genes. EMBO Journal, 2007, 26, 3451-3462.	3.5	108
294	Plasmacytoid dendritic cell–derived type I interferon is crucial for the adjuvant activity of Toll-like receptor 7 agonists. Blood, 2010, 115, 1949-1957.	0.6	108
295	IL-18-deficient mice are resistant to endotoxin-induced liver injury but highly susceptible to endotoxin shock. International Immunology, 1999, 11, 471-480.	1.8	107
296	Viral Infection Augments Nod1/2 Signaling to Potentiate Lethality Associated with Secondary Bacterial Infections. Cell Host and Microbe, 2011, 9, 496-507.	5.1	107
297	Inhibitory Effect of Toll-Like Receptor 4 on Fusion between Phagosomes and Endosomes/Lysosomes in Macrophages. Journal of Immunology, 2004, 172, 2039-2047.	0.4	105
298	Akirin2 is critical for inducing inflammatory genes by bridging lκBâ€Î¶ and the <scp>SWI</scp> / <scp>SNF</scp> complex. EMBO Journal, 2014, 33, 2332-2348.	3.5	105
299	Adjuvant-Mediated Tumor Regression and Tumor-Specific Cytotoxic Response Are Impaired in MyD88-Deficient Mice. Cancer Research, 2004, 64, 757-764.	0.4	104
300	TLR9 signalling in microglia attenuates seizure-induced aberrant neurogenesis in the adult hippocampus. Nature Communications, 2015, 6, 6514.	5.8	104
301	Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration. Nature Communications, 2016, 7, 11051.	5.8	104
302	Modified Vaccinia Virus Ankara Induces Toll-Like Receptor-Independent Type I Interferon Responses. Journal of Virology, 2007, 81, 12102-12110.	1.5	103
303	Deoxynucleic Acids from <i>Cryptococcus neoformans</i> Activate Myeloid Dendritic Cells via a TLR9-Dependent Pathway. Journal of Immunology, 2008, 180, 4067-4074.	0.4	103
304	IL-18 Improves the Early Antimicrobial Host Response to Pneumococcal Pneumonia. Journal of Immunology, 2002, 168, 372-378.	0.4	102
305	TLR9 Is Required for Protective Innate Immunity in Gram-Negative Bacterial Pneumonia: Role of Dendritic Cells. Journal of Immunology, 2007, 179, 3937-3946.	0.4	102
306	TRAF6 Establishes Innate Immune Responses by Activating NF-κB and IRF7 upon Sensing Cytosolic Viral RNA and DNA. PLoS ONE, 2009, 4, e5674.	1.1	102

#	Article	IF	CITATIONS
307	Manifold Mechanisms of Toll-Like Receptor-Ligand Recognition. Journal of Clinical Immunology, 2005, 25, 511-521.	2.0	100
308	Role for MyD88-Independent, TRIF Pathway in Lipid A/TLR4-Induced Endotoxin Tolerance. Journal of Immunology, 2007, 179, 4083-4092.	0.4	100
309	Poly I:C-Induced Activation of NK Cells by CD8α+ Dendritic Cells via the IPS-1 and TRIF-Dependent Pathways. Journal of Immunology, 2009, 183, 2522-2528.	0.4	100
310	Epigenetic control of macrophage polarization. European Journal of Immunology, 2011, 41, 2490-2493.	1.6	100
311	MyD88, but Not Toll-Like Receptors 4 and 2, Is Required for Efficient Clearance of Brucella abortus. Infection and Immunity, 2005, 73, 5137-5143.	1.0	99
312	Altered Inflammatory Responses in TLR5-Deficient Mice Infected with <i>Legionella pneumophila</i> . Journal of Immunology, 2007, 179, 6981-6987.	0.4	99
313	Novel Strategies to Improve DNA Vaccine Immunogenicity. Current Gene Therapy, 2011, 11, 479-484.	0.9	99
314	Sepsis-Induced Osteoblast Ablation Causes Immunodeficiency. Immunity, 2016, 44, 1434-1443.	6.6	99
315	Toll-Like Receptor 9-Dependent Activation of Myeloid Dendritic Cells by Deoxynucleic Acids from <i>Candida albicans</i> . Infection and Immunity, 2009, 77, 3056-3064.	1.0	98
316	Dendritic Cell Maturation Induced by Muramyl Dipeptide (MDP) Derivatives: Monoacylated MDP Confers TLR2/TLR4 Activation. Journal of Immunology, 2005, 174, 7096-7103.	0.4	96
317	A selective contribution of the RIG-I-like receptor pathway to type I interferon responses activated by cytosolic DNA. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17870-17875.	3.3	96
318	Differential inductions of TNF-alpha and IGTP, IIGP by structurally diverse classic and non-classic lipopolysaccharides. Cellular Microbiology, 2006, 8, 401-413.	1.1	95
319	Calcineurin Negatively Regulates TLR-Mediated Activation Pathways. Journal of Immunology, 2007, 179, 4598-4607.	0.4	94
320	Differential Role for c-Rel and C/EBPβ/δ in TLR-Mediated Induction of Proinflammatory Cytokines. Journal of Immunology, 2009, 182, 7212-7221.	0.4	94
321	Crohn disease: A current perspective on genetics, autophagy and immunity. Autophagy, 2011, 7, 355-374.	4.3	94
322	Toll-like receptor 3 and 4 signalling through the TRIF and TRAM adaptors in haematopoietic cells promotes atherosclerosis. Cardiovascular Research, 2013, 99, 364-373.	1.8	94
323	TRAF4 acts as a silencer in TLR-mediated signaling through the association with TRAF6 and TRIF. European Journal of Immunology, 2005, 35, 2477-2485.	1.6	91
324	The nuclear factor interleukin-6 (NF-IL6) and signal transducer and activator of transcription-3 (STAT-3) signalling pathways co-operate to mediate the activation of the hsp90β gene by interleukin-6 but have opposite effects on its inducibility by heat shock. Biochemical Journal, 1998, 330, 189-195.	1.7	90

#	Article	IF	CITATIONS
325	Normal proportion and expression of maturation markers in migratory dendritic cells in the absence of germs or Tollâ€like receptor signaling. Immunology and Cell Biology, 2008, 86, 200-205.	1.0	90
326	TRAF6 and MEKK1 Play a Pivotal Role in the RIG-I-like Helicase Antiviral Pathway. Journal of Biological Chemistry, 2008, 283, 36211-36220.	1.6	89
327	The Toll-Like Receptor 3-Mediated Antiviral Response Is Important for Protection against Poliovirus Infection in Poliovirus Receptor Transgenic Mice. Journal of Virology, 2012, 86, 185-194.	1.5	88
328	Leishmania-Induced IRAK-1 Inactivation Is Mediated by SHP-1 Interacting with an Evolutionarily Conserved KTIM Motif. PLoS Neglected Tropical Diseases, 2008, 2, e305.	1.3	88
329	Interleukin 18 (IL-18) in synergy with IL-2 induces lethal lung injury in mice: a potential role for cytokines, chemokines, and natural killer cells in the pathogenesis of interstitial pneumonia. Blood, 2002, 99, 1289-1298.	0.6	87
330	Positive Feedback Within a Kinase Signaling Complex Functions as a Switch Mechanism for NF-κB Activation. Science, 2014, 344, 760-764.	6.0	87
331	An epigenetic switch induced by Shh signalling regulates gene activation during development and medulloblastoma growth. Nature Communications, 2014, 5, 5425.	5.8	87
332	TLR-Dependent Induction of IFN-Î ² Mediates Host Defense againstTrypanosoma cruzi. Journal of Immunology, 2006, 177, 7059-7066.	0.4	85
333	Toll/IL-1R Domain-Containing Adaptor Protein (TIRAP) Is a Critical Mediator of Antibacterial Defense in the Lung against <i>Klebsiella pneumoniae</i> but Not <i>Pseudomonas aeruginosa</i> . Journal of Immunology, 2006, 177, 538-547.	0.4	85
334	Limited contribution of Toll-like receptor 2 and 4 to the host response to a fungal infectious pathogen,Cryptococcus neoformans. FEMS Immunology and Medical Microbiology, 2006, 47, 148-154.	2.7	84
335	Cutting Edge: TLR-Dependent Viral Recognition Along with Type I IFN Positive Feedback Signaling Masks the Requirement of Viral Replication for IFN-α Production in Plasmacytoid Dendritic Cells. Journal of Immunology, 2009, 182, 3960-3964.	0.4	83
336	B Lymphocyte Activation by Human Papillomavirus-Like Particles Directly Induces Ig Class Switch Recombination via TLR4-MyD88. Journal of Immunology, 2005, 174, 7912-7919.	0.4	82
337	Contribution of Toll-like Receptor 9 Signaling to the Acute Inflammatory Response to Nonviral Vectors. Molecular Therapy, 2004, 9, 241-248.	3.7	81
338	The Enzyme Cyp26b1 Mediates Inhibition of Mast Cell Activation by Fibroblasts to Maintain Skin-Barrier Homeostasis. Immunity, 2014, 40, 530-541.	6.6	81
339	CpG RNA: Identification of Novel Single-Stranded RNA That Stimulates Human CD14+CD11c+ Monocytes. Journal of Immunology, 2005, 174, 2273-2279.	0.4	80
340	Group A Streptococcus Activates Type I Interferon Production and MyD88-dependent Signaling without Involvement of TLR2, TLR4, and TLR9. Journal of Biological Chemistry, 2008, 283, 19879-19887.	1.6	80
341	Plasmacytoid Dendritic Cells Promote Host Defense against Acute Pneumovirus Infection via the TLR7–MyD88-Dependent Signaling Pathway. Journal of Immunology, 2011, 186, 5938-5948.	0.4	80
342	Resveratrol inhibits the acetylated α-tubulin-mediated assembly of the NLRP3-inflammasome. International Immunology, 2015, 27, 425-434.	1.8	80

#	Article	IF	CITATIONS
343	Cutting Edge: Role of TANK-Binding Kinase 1 and Inducible lκB Kinase in IFN Responses against Viruses in Innate Immune Cells. Journal of Immunology, 2006, 177, 5785-5789.	0.4	79
344	<i>Toxoplasma gondii</i> Genotype Determines MyD88-Dependent Signaling in Infected Macrophages. Journal of Immunology, 2006, 177, 2584-2591.	0.4	79
345	MyD88 Signaling Controls Autoimmune Myocarditis Induction. Circulation, 2006, 113, 258-265.	1.6	78
346	Deficiencies of Myeloid Differentiation Factor 88, Toll-Like Receptor 2 (TLR2), or TLR4 Produce Specific Defects in Macrophage Cytokine Secretion Induced by Helicobacter pylori. Infection and Immunity, 2007, 75, 2408-2414.	1.0	78
347	Toll-Like Receptor Adaptor Molecules Enhance DNA-Raised Adaptive Immune Responses against Influenza and Tumors through Activation of Innate Immunity. Journal of Virology, 2006, 80, 6218-6224.	1.5	77
348	Immune responses of TLR5+ lamina propria dendritic cells in enterobacterial infection. Journal of Gastroenterology, 2009, 44, 803-811.	2.3	77
349	Role of TLR in B Cell Development: Signaling through TLR4 Promotes B Cell Maturation and Is Inhibited by TLR2. Journal of Immunology, 2005, 174, 6639-6647.	0.4	76
350	Up-Regulation of NOD1 and NOD2 through TLR4 and TNFALPHA. in LPS-treated Murine Macrophages. Journal of Veterinary Medical Science, 2006, 68, 471-478.	0.3	76
351	Signaling pathways activated by microorganisms. Current Opinion in Cell Biology, 2007, 19, 185-191.	2.6	76
352	Molecular and cellular mechanisms of DNA vaccines. Hum Vaccin, 2008, 4, 453-457.	2.4	76
353	Toll-Like Receptor 2 Mediates Apolipoprotein CIII–Induced Monocyte Activation: Retracted. Circulation Research, 2008, 103, 1402-1409.	2.0	75
354	Flagellin enhances tumor-specific CD8+ T cell immune responses through TLR5 stimulation in a therapeutic cancer vaccine model. Vaccine, 2013, 31, 3879-3887.	1.7	75
355	Nociceptors Boost the Resolution of Fungal Osteoinflammation via the TRP Channel-CGRP-Jdp2 Axis. Cell Reports, 2017, 19, 2730-2742.	2.9	75
356	Mycobacterial Infection in MyD88â€Đeficient Mice. Microbiology and Immunology, 2003, 47, 841-847.	0.7	74
357	Muramyl Dipeptide Enhances Osteoclast Formation Induced by Lipopolysaccharide, IL-1α, and TNF-α through Nucleotide-Binding Oligomerization Domain 2-Mediated Signaling in Osteoblasts. Journal of Immunology, 2005, 175, 1956-1964.	0.4	74
358	Induction of an Anti-Inflammatory Cytokine, IL-10, in Dendritic Cells After Toll-like Receptor Signaling. Journal of Interferon and Cytokine Research, 2006, 26, 893-900.	0.5	74
359	Type 1 cytokine/chemokine production by mouse NK cells following activation of their TLR/MyD88-mediated pathways. International Immunology, 2007, 19, 311-320.	1.8	74
360	Augmented TLR9-induced Btk activation in PIR-B–deficient B-1 cells provokes excessive autoantibody production and autoimmunity. Journal of Experimental Medicine, 2009, 206, 1971-1982.	4.2	74

#	Article	IF	CITATIONS
361	TLR5 functions as an endocytic receptor to enhance flagellinâ€specific adaptive immunity. European Journal of Immunology, 2011, 41, 29-38.	1.6	74
362	p62 Plays a Specific Role in Interferon-Î ³ -Induced Presentation of a Toxoplasma Vacuolar Antigen. Cell Reports, 2015, 13, 223-233.	2.9	74
363	Enhanced TLR-mediated NF-IL6–dependent gene expression by Trib1 deficiency. Journal of Experimental Medicine, 2007, 204, 2233-2239.	4.2	73
364	The viral RNA recognition sensor RIG-I is degraded during encephalomyocarditis virus (EMCV) infection. Virology, 2009, 393, 311-318.	1.1	73
365	The role of multiple toll-like receptor signalling cascades on interactions between biomedical polymers and dendritic cells. Biomaterials, 2010, 31, 5759-5771.	5.7	72
366	Manipulation of host innate immune responses by the malaria parasite. Trends in Microbiology, 2007, 15, 271-278.	3.5	71
367	TLR5-Deficient Mice Lack Basal Inflammatory and Metabolic Defects but Exhibit Impaired CD4 T Cell Responses to a Flagellated Pathogen. Journal of Immunology, 2011, 186, 5406-5412.	0.4	71
368	Leishmania major activates IL-1α expression in macrophages through a MyD88-dependent pathway. Microbes and Infection, 2002, 4, 763-771.	1.0	70
369	The Transcription Factor Jdp2 Controls Bone Homeostasis and Antibacterial Immunity by Regulating Osteoclast and Neutrophil Differentiation. Immunity, 2012, 37, 1024-1036.	6.6	70
370	THIS ARTICLE HAS BEEN RETRACTED: Tollâ€like receptor 3 contributes to spinal glial activation and tactile allodynia after nerve injury. Journal of Neurochemistry, 2008, 105, 2249-2259.	2.1	68
371	Toll/IL-1 Receptor Domain-Containing Adaptor Inducing IFN-β (TRIF)-Mediated Signaling Contributes to Innate Immune Responses in the Lung during Escherichia coli Pneumonia. Journal of Immunology, 2007, 178, 3153-3160.	0.4	67
372	mRNA degradation by the endoribonuclease Regnase-1/ZC3H12a/MCPIP-1. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 708-713.	0.9	67
373	Activation of Lipopolysaccharide–TLR4 Signaling Accelerates the Ototoxic Potential of Cisplatin in Mice. Journal of Immunology, 2011, 186, 1140-1150.	0.4	65
374	Contribution of TIR domain-containing adapter inducing IFN-β-mediated IL-18 release to LPS-induced liver injury in mice. Journal of Hepatology, 2009, 51, 333-341.	1.8	64
375	Intracellular <i>Mycobacterium avium</i> Intersect Transferrin in the Rab11 ⁺ Recycling Endocytic Pathway and Avoid Lipocalin 2 Trafficking to the Lysosomal Pathway. Journal of Infectious Diseases, 2010, 201, 783-792.	1.9	64
376	'Toll' Gates for Future Immunotherapy. Current Pharmaceutical Design, 2006, 12, 4135-4142.	0.9	63
377	Induction of adaptive immunity by flagellin does not require robust activation of innate immunity. European Journal of Immunology, 2009, 39, 359-371.	1.6	63
378	Toll-IL-1 Receptor Domain-Containing Adaptor Protein Is Critical for Early Lung Immune Responses against <i>Escherichia coli</i> Lipopolysaccharide and Viable <i>Escherichia coli</i> . Journal of Immunology, 2005, 175, 7484-7495.	0.4	61

#	Article	IF	CITATIONS
379	TLR2-Dependent Inflammatory Response to <i>Porphyromonas gingivalis</i> Is MyD88 Independent, whereas MyD88 Is Required To Clear Infection. Journal of Immunology, 2010, 184, 1455-1462.	0.4	61
380	Nitrogen Dioxide Promotes Allergic Sensitization to Inhaled Antigen. Journal of Immunology, 2007, 179, 3680-3688.	0.4	60
381	Cytosolic RIG-l–like helicases act as negative regulators of sterile inflammation in the CNS. Nature Neuroscience, 2012, 15, 98-106.	7.1	60
382	Innate immune recognition of nucleic acids: Beyond toll-like receptors. International Journal of Cancer, 2005, 117, 517-523.	2.3	59
383	Selective synergy in anti-inflammatory cytokine production upon cooperated signaling via TLR4 and TLR2 in murine conventional dendritic cells. Molecular Immunology, 2008, 45, 2734-2742.	1.0	58
384	MyD88-Dependent Pathway in T Cells Directly Modulates the Expansion of Colitogenic CD4+ T Cells in Chronic Colitis. Journal of Immunology, 2008, 180, 5291-5299.	0.4	58
385	Impaired autophagy in macrophages promotes inflammatory eye disease. Autophagy, 2016, 12, 1876-1885.	4.3	58
386	Eosinophil depletion suppresses radiation-induced small intestinal fibrosis. Science Translational Medicine, 2018, 10, .	5.8	58
387	Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from Trypanosoma cruzi trypomastigotes induce in vivo leukocyte recruitment dependent on MCP-1 production by IFN-gamma-primed-macrophages. Journal of Leukocyte Biology, 2002, 71, 837-44.	1.5	58
388	Heterozygous <i>Tbk1</i> loss has opposing effects in early and late stages of ALS in mice. Journal of Experimental Medicine, 2019, 216, 267-278.	4.2	57
389	Papillomavirus Capsid Mutation To Escape Dendritic Cell-Dependent Innate Immunity in Cervical Cancer. Journal of Virology, 2005, 79, 6741-6750.	1.5	56
390	Tollâ€like receptor 4 signalling through MyD88 is essential to control <i>Salmonella enterica</i> serovar Typhimurium infection, but not for the initiation of bacterial clearance. Immunology, 2009, 128, 472-483.	2.0	56
391	TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nature Communications, 2015, 6, 10123.	5.8	56
392	Toll-like receptor-mediated tyrosine phosphorylation of paxillin via MyD88-dependent and -independent pathways. European Journal of Immunology, 2003, 33, 740-747.	1.6	55
393	VP1686, a Vibrio Type III Secretion Protein, Induces Toll-like Receptor-independent Apoptosis in Macrophage through NF-IºB Inhibition. Journal of Biological Chemistry, 2006, 281, 36897-36904.	1.6	55
394	Viral 5′â€ŧriphosphate RNA and non pG DNA aggravate autoimmunity and lupus nephritis <i>via</i> distinct TLRâ€independent immune responses. European Journal of Immunology, 2008, 38, 3487-3498.	1.6	55
395	Pathways Regulating Cytosolic Phospholipase A2 Activation and Eicosanoid Production in Macrophages by Candida albicans. Journal of Biological Chemistry, 2010, 285, 30676-30685.	1.6	55
396	Lipid A Receptor TLR4-Mediated Signaling Pathways. Advances in Experimental Medicine and Biology, 2009, 667, 59-68.	0.8	53

#	Article	IF	CITATIONS
397	Lipopolysaccharide and Double-stranded RNA Up-regulate Toll-like Receptor 2 Independently of Myeloid Differentiation Factor 88. Journal of Biological Chemistry, 2004, 279, 39727-39735.	1.6	52
398	Spontaneous Ocular Surface Inflammation and Goblet Cell Disappearance in IκBζ Gene-Disrupted Mice. , 2005, 46, 579.		52
399	Mitochondrial damage elicits a TCDD-inducible poly(ADP-ribose) polymerase-mediated antiviral response. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2681-2686.	3.3	52
400	Lipopolysaccharide Preparation Extracted from Porphyromonas gingivalis Lipoprotein-Deficient Mutant Shows a Marked Decrease in Toll-Like Receptor 2-Mediated Signaling. Infection and Immunity, 2005, 73, 2157-2163.	1.0	51
401	A Novel Caspase-1/Toll-like Receptor 4-independent Pathway of Cell Death Induced by Cytosolic Shigella in Infected Macrophages. Journal of Biological Chemistry, 2005, 280, 14042-14050.	1.6	51
402	Olfactory Plays a Key Role in Spatiotemporal Pathogenesis of Cerebral Malaria. Cell Host and Microbe, 2014, 15, 551-563.	5.1	51
403	Genetic and pharmacological inhibition of microRNA-92a maintains podocyte cell cycle quiescence and limits crescentic glomerulonephritis. Nature Communications, 2017, 8, 1829.	5.8	50
404	MyD88 Deficiency Results in Tissue-Specific Changes in Cytokine Induction and Inflammation in Interleukin-18-Independent Mice Infected with Borrelia burgdorferi. Infection and Immunity, 2006, 74, 1462-1470.	1.0	49
405	Immunoadjuvant effects of polyadenylic:polyuridylic acids through TLR3 and TLR7. International Immunology, 2008, 20, 1-9.	1.8	49
406	TLR4 Ligands Induce IFN-α Production by Mouse Conventional Dendritic Cells and Human Monocytes after IFN-β Priming. Journal of Immunology, 2009, 182, 820-828.	0.4	49
407	Strawberry notch homologue 2 regulates osteoclast fusion by enhancing the expression of DC-STAMP. Journal of Experimental Medicine, 2013, 210, 1947-1960.	4.2	49
408	The Malarial Metabolite Hemozoin and Its Potential Use as a Vaccine Adjuvant. Allergology International, 2010, 59, 115-124.	1.4	47
409	Inhibition of microsomal prostaglandin E synthase-1 facilitates liver repair after hepatic injury in mice. Journal of Hepatology, 2018, 69, 110-120.	1.8	47
410	Control of RNA Stability in Immunity. Annual Review of Immunology, 2021, 39, 481-509.	9.5	47
411	TRAF6 Is Required for Generation of the B-1a B Cell Compartment as well as T Cell-Dependent and -Independent Humoral Immune Responses. PLoS ONE, 2009, 4, e4736.	1.1	47
412	BS69, a Specific Adaptor in the Latent Membrane Protein 1-Mediated c-Jun N-Terminal Kinase Pathway. Molecular and Cellular Biology, 2006, 26, 448-456.	1.1	46
413	Regulation of mRNA stability by CCCH-type zinc-finger proteins in immune cells. International Immunology, 2017, 29, 149-155.	1.8	46
414	Non–Mannose-capped Lipoarabinomannan Induces Lung Inflammation via Toll-like Receptor 2. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 1367-1374.	2.5	45

#	Article	IF	CITATIONS
415	Emergent Genome-Wide Control in Wildtype and Genetically Mutated Lipopolysaccarides-Stimulated Macrophages. PLoS ONE, 2009, 4, e4905.	1.1	45
416	G-CSF-induced sympathetic tone provokes fever and primes antimobilizing functions of neutrophils via PGE2. Blood, 2017, 129, 587-597.	0.6	45
417	Retinal cell typeâ€specific prevention of ischemiaâ€induced damages by <scp>LPS</scp> â€ <scp>TLR</scp> 4 signaling through microglia. Journal of Neurochemistry, 2013, 126, 243-260.	2.1	44
418	Phosphorylation-dependent Regnase-1 release from endoplasmic reticulum is critical in IL-17 response. Journal of Experimental Medicine, 2019, 216, 1431-1449.	4.2	44
419	Innate immunity in allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1660-1674.	2.7	44
420	Signaling Flux Redistribution at Toll-Like Receptor Pathway Junctions. PLoS ONE, 2008, 3, e3430.	1.1	43
421	The ATP Transporter VNUT Mediates Induction of Dectin-1-Triggered Candida Nociception. IScience, 2018, 6, 306-318.	1.9	43
422	The role of Toll-like receptors in immune disorders. Expert Opinion on Biological Therapy, 2006, 6, 203-214.	1.4	42
423	Gene-specific Requirement of a Nuclear Protein, IκB-ζ, for Promoter Association of Inflammatory Transcription Regulators. Journal of Biological Chemistry, 2008, 283, 32404-32411.	1.6	41
424	Radioresistant cells expressing TLR5 control the respiratory epithelium's innate immune responses to flagellin. European Journal of Immunology, 2009, 39, 1587-1596.	1.6	41
425	Antitumor effect of <i>Batf2</i> through IL-12 p40 up-regulation in tumor-associated macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7331-E7340.	3.3	41
426	Downstream Signals for MyD88-Mediated Phagocytosis of <i>Borrelia burgdorferi</i> Can Be Initiated by TRIF and Are Dependent on PI3K. Journal of Immunology, 2009, 183, 491-498.	0.4	40
427	Reciprocal regulation of STING and TCR signaling by mTORC1 for T-cell activation and function. Life Science Alliance, 2019, 2, e201800282.	1.3	40
428	IL-1R-Associated Kinase 4 Is Required for Lipopolysaccharide- Induced Activation of APC. Journal of Immunology, 2003, 171, 6065-6071.	0.4	39
429	Excessive CpG 1668 stimulation triggers ILâ€10 production by cDC that inhibits IFNâ€Î± responses by pDC. European Journal of Immunology, 2008, 38, 3127-3137.	1.6	39
430	Augmentation of haptoglobin production in Hep3B cell line by a nuclear factor NF-IL6. FEBS Letters, 1991, 291, 58-62.	1.3	38
431	Toll-like receptor 9 prevents cardiac rupture after myocardial infarction in mice independently of inflammation. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1485-H1497.	1.5	38
432	Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions. Scientific Reports, 2016, 6, 22324.	1.6	38

#	Article	IF	CITATIONS
433	TRAF Family Member-associated NF-κB Activator (TANK) Is a Negative Regulator of Osteoclastogenesis and Bone Formation. Journal of Biological Chemistry, 2012, 287, 29114-29124.	1.6	37
434	Tribbles Homolog 3 Attenuates Mammalian Target of Rapamycin Complex-2 Signaling and Inflammation in the Diabetic Kidney. Journal of the American Society of Nephrology: JASN, 2014, 25, 2067-2078.	3.0	37
435	Comparison of CpG s-ODNs, chromatin immune complexes, and dsDNA fragment immune complexes in the TLR9-dependent activation of rheumatoid factor B cells. Journal of Endotoxin Research, 2004, 10, 247-251.	2.5	36
436	Priming Effect of Lipopolysaccharide on Acetyl-Coenzyme A:Lyso-Platelet-Activating Factor Acetyltransferase Is MyD88 and TRIF Independent. Journal of Immunology, 2005, 175, 1177-1183.	0.4	36
437	TLR Ignores Methylated RNA?. Immunity, 2005, 23, 111-113.	6.6	36
438	Nucleic acid sensing by T cells initiates Th2 cell differentiation. Nature Communications, 2014, 5, 3566.	5.8	36
439	JAK2V617F+ myeloproliferative neoplasm clones evoke paracrine DNA damage to adjacent normal cells through secretion of lipocalin-2. Blood, 2014, 124, 2996-3006.	0.6	36
440	Innate immune adaptor TRIF deficiency accelerates disease progression of ALS mice with accumulation of aberrantly activated astrocytes. Cell Death and Differentiation, 2018, 25, 2130-2146.	5.0	36
441	TLR7 Structure: Cut in Z-Loop. Immunity, 2016, 45, 705-707.	6.6	35
442	Targeted Disruption of the IL-6 Related Genes: gp130 and NF-IL-6. Immunological Reviews, 1995, 148, 221-253.	2.8	34
443	MyD88 Signaling Inhibits Protective Immunity to the Gastrointestinal Helminth Parasite <i>Heligmosomoides polygyrus</i> . Journal of Immunology, 2014, 193, 2984-2993.	0.4	34
444	Oncolytic Reovirus Inhibits Immunosuppressive Activity of Myeloid-Derived Suppressor Cells in a TLR3-Dependent Manner. Journal of Immunology, 2018, 200, 2987-2999.	0.4	34
445	Caffeine-stimulated muscle IL-6 mediates alleviation of non-alcoholic fatty liver disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 271-280.	1.2	34
446	Trif is not required for immune complex glomerulonephritis: dying cells activate mesangial cells via Tlr2/Myd88 rather than Tlr3/Trif. American Journal of Physiology - Renal Physiology, 2009, 296, F867-F874.	1.3	33
447	Dysregulated Expression of the Nuclear Exosome Targeting Complex Component Rbm7 in Nonhematopoietic Cells Licenses the Development of Fibrosis. Immunity, 2020, 52, 542-556.e13.	6.6	33
448	Innate immune control of nucleic acid-based vaccine immunogenicity. Expert Review of Vaccines, 2009, 8, 1099-1107.	2.0	32
449	<i>Plasmodium</i> products persist in the bone marrow and promote chronic bone loss. Science Immunology, 2017, 2, .	5.6	32
450	Toll-Like Receptor 2 Does Not Contribute to Host Response during Postinfluenza Pneumococcal Pneumonia. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 609-614.	1.4	31

#	Article	IF	CITATIONS
451	NFATc1 Mediates Toll-Like Receptor-Independent Innate Immune Responses during Trypanosoma cruzi Infection. PLoS Pathogens, 2009, 5, e1000514.	2.1	31
452	Regnase-1, a Ribonuclease Involved in the Regulation of Immune Responses. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 51-60.	2.0	31
453	Regnase-1 controls colon epithelial regeneration via regulation of mTOR and purine metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11036-11041.	3.3	31
454	Cutting Edge: TAK1 Safeguards Macrophages against Proinflammatory Cell Death. Journal of Immunology, 2019, 203, 783-788.	0.4	31
455	Interleukin-18 Facilitates the Early Antimicrobial Host Response to Escherichia coli Peritonitis. Infection and Immunity, 2003, 71, 5488-5497.	1.0	30
456	Toll-like receptor 7 cooperates with IL-4 in activated B cells through antigen receptor or CD38 and induces class switch recombination and IgG1 production. Molecular Immunology, 2009, 46, 1278-1288.	1.0	30
457	Ablation of Toll-like receptor 9 attenuates myocardial ischemia/reperfusion injury in mice. Biochemical and Biophysical Research Communications, 2019, 515, 442-447.	1.0	30
458	Hepatic lipocalin 2 promotes liver fibrosis and portal hypertension. Scientific Reports, 2020, 10, 15558.	1.6	30
459	SnapShot: Pattern-Recognition Receptors. Cell, 2007, 129, 1024.e1-1024.e2.	13.5	29
460	Role of the Atg9a gene in intrauterine growth and survival of fetal mice. Reproductive Biology, 2015, 15, 131-138.	0.9	29
461	Toll-like receptors and sepsis. Current Infectious Disease Reports, 2004, 6, 361-366.	1.3	28
462	Differential Contribution of Osteoclast- and Osteoblast-Lineage Cells to CpG-Oligodeoxynucleotide (CpG-ODN) Modulation of Osteoclastogenesis. Journal of Bone and Mineral Research, 2005, 20, 1692-1699.	3.1	28
463	The synthetic analogue of mycoplasmal lipoprotein FSL-1 induces dendritic cell maturation through Toll-like receptor 2. FEMS Immunology and Medical Microbiology, 2006, 46, 78-84.	2.7	28
464	Potential link between the immune system and metabolism of nucleic acids. Current Opinion in Immunology, 2008, 20, 524-529.	2.4	28
465	MyD88 protects from lethal encephalitis during infection with vesicular stomatitis virus. European Journal of Immunology, 2007, 37, 2434-2440.	1.6	27
466	An Integrative Framework Reveals Signaling-to-Transcription Events in Toll-like Receptor Signaling. Cell Reports, 2017, 19, 2853-2866.	2.9	26
467	Intestinal CD103+CD11b+ cDC2 Conventional Dendritic Cells Are Required for Primary CD4+ T and B Cell Responses to Soluble Flagellin. Frontiers in Immunology, 2018, 9, 2409.	2.2	26
468	TAK1 Prevents Endothelial Apoptosis and Maintains Vascular Integrity. Developmental Cell, 2019, 48, 151-166.e7.	3.1	26

#	Article	IF	CITATIONS
469	Soluble flagellin coimmunization attenuates Th1 priming to Salmonella and clearance by modulating dendritic cell activation and cytokine production. European Journal of Immunology, 2015, 45, 2299-2311.	1.6	25
470	Rapid CD4 ⁺ Tâ€cell responses to bacterial flagellin require dendritic cell expression of Syk and CARD9. European Journal of Immunology, 2015, 45, 513-524.	1.6	25
471	Bone-protective Functions of Netrin 1 Protein. Journal of Biological Chemistry, 2016, 291, 23854-23868.	1.6	25
472	The TNF Family Member 4-1BBL Sustains Inflammation by Interacting with TLR Signaling Components During Late-Phase Activation. Science Signaling, 2013, 6, ra87.	1.6	24
473	Intrinsic Disorder Mediates Cooperative Signal Transduction in STIM1. Journal of Molecular Biology, 2014, 426, 2082-2097.	2.0	24
474	Immunogenicity and protective efficacy offered by a ribosomal-based vaccine from Shigella flexneri 2a. Vaccine, 2007, 25, 4828-4836.	1.7	22
475	Critical Role of AZI2 in GM-CSF–Induced Dendritic Cell Differentiation. Journal of Immunology, 2013, 190, 5702-5711.	0.4	22
476	Orally desensitized mast cells form a regulatory network with Treg cells for the control of food allergy. Mucosal Immunology, 2021, 14, 640-651.	2.7	22
477	Toll-Like Receptor 2 Deficiency Is Associated with Enhanced Severity of Group B Streptococcal Disease. Infection and Immunity, 2009, 77, 1524-1531.	1.0	21
478	The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses. Cell Reports, 2017, 20, 2944-2954.	2.9	21
479	Microsomal prostaglandin E synthase-1 promotes lung metastasis via SDF-1/CXCR4-mediated recruitment of CD11b+Gr1+MDSCs from bone marrow. Biomedicine and Pharmacotherapy, 2020, 121, 109581.	2.5	21
480	Nonredundant roles of TIRAP and MyD88 in airway response to endotoxin, independent of TRIF, IL-1 and IL-18 pathways. Laboratory Investigation, 2006, 86, 1126-1135.	1.7	20
481	A Lipopolysaccharide from Pantoea Agglomerans Is a Promising Adjuvant for Sublingual Vaccines to Induce Systemic and Mucosal Immune Responses in Mice via TLR4 Pathway. PLoS ONE, 2015, 10, e0126849.	1.1	20
482	ZBP1 governs the inflammasome-independent IL-1α and neutrophil inflammation that play a dual role in anti-influenza virus immunity. International Immunology, 2020, 32, 203-212.	1.8	20
483	Beclin 1 regulates recycling endosome and is required for skin development in mice. Communications Biology, 2019, 2, 37.	2.0	20
484	Salmonella-induced SipB-independent cell death requires Toll-like receptor-4 signalling via the adapter proteins Tram and Trif. Immunology, 2007, 122, 222-229.	2.0	19
485	Telomere-Mediated Chromosomal Instability Triggers TLR4 Induced Inflammation and Death in Mice. PLoS ONE, 2010, 5, e11873.	1.1	19
486	TLR7 Contributes to the Rapid Progression but Not to the Overall Fatal Outcome of Secondary Pneumococcal Disease following Influenza A Virus Infection. Journal of Innate Immunity, 2013, 5, 84-96.	1.8	19

#	Article	IF	CITATIONS
487	Regnase-1-mediated post-transcriptional regulation is essential for hematopoietic stem and progenitor cell homeostasis. Nature Communications, 2019, 10, 1072.	5.8	19
488	Bug detectors. Nature, 2001, 414, 701-703.	13.7	18
489	Prevention of Intestinal Allergy in Mice by rflaA:Ova Is Associated with Enforced Antigen Processing and TLR5-Dependent IL-10 Secretion by mDC. PLoS ONE, 2014, 9, e87822.	1.1	18
490	Negative Regulation of Melanoma Differentiation-associated Gene 5 (MDA5)-dependent Antiviral Innate Immune Responses by Arf-like Protein 5B. Journal of Biological Chemistry, 2015, 290, 1269-1280.	1.6	18
491	Role of zinc-finger anti-viral protein in host defense against Sindbis virus. International Immunology, 2015, 27, 357-364.	1.8	18
492	mTORC1 Signaling Controls TLR2-Mediated T-Cell Activation by Inducing TIRAP Expression. Cell Reports, 2020, 32, 107911.	2.9	18
493	Immunoregulatory Monocyte Subset Promotes Metastasis Associated With Therapeutic Intervention for Primary Tumor. Frontiers in Immunology, 2021, 12, 663115.	2.2	18
494	Regnase-1 degradation is crucial for IL-33– and IL-25–mediated ILC2 activation. JCI Insight, 2020, 5, .	2.3	18
495	Toll-Like Receptor Signaling: Emerging Opportunities in Human Diseases and Medicine. Current Immunology Reviews, 2005, 1, 81-90.	1.2	17
496	A Signaling Polypeptide Derived from an Innate Immune Adaptor Molecule Can Be Harnessed as a New Class of Vaccine Adjuvant. Journal of Immunology, 2009, 182, 1593-1601.	0.4	17
497	Homeostatic defects in interleukin 18â€deficient mice contribute to protection against the lethal effects of endotoxin. Immunology and Cell Biology, 2011, 89, 739-746.	1.0	17
498	BATF2 activates DUSP2 gene expression and up-regulates NF-ήB activity via phospho-STAT3 dephosphorylation. International Immunology, 2018, 30, 255-265.	1.8	17
499	RIG-I-like antiviral protein in flies. Nature Immunology, 2008, 9, 1327-1328.	7.0	16
500	Microsomal prostaglandin E synthase-1 is a critical factor in dopaminergic neurodegeneration in Parkinson's disease. Neurobiology of Disease, 2019, 124, 81-92.	2.1	16
501	Enhancing the regenerative effectiveness of growth factors by local inhibition of interleukin-1 receptor signaling. Science Advances, 2020, 6, eaba7602.	4.7	16
502	Genome-wide map of RNA degradation kinetics patterns in dendritic cells after LPS stimulation facilitates identification of primary sequence and secondary structure motifs in mRNAs. BMC Genomics, 2016, 17, 1032.	1.2	15
503	B cellâ€intrinsic MyD88 signaling controls IFNâ€Î³â€mediated early IgG2c class switching in mice in response to a particulate adjuvant. European Journal of Immunology, 2019, 49, 1433-1440.	1.6	15
504	Hemizygous deletion of Tbk1 worsens neuromuscular junction pathology in TDP-43 transgenic mice. Experimental Neurology, 2021, 335, 113496.	2.0	15

#	Article	IF	CITATIONS
505	Polyl:C-induced reduction in uptake of soluble antigen is independent of dendritic cell activation. International Immunology, 2009, 21, 871-879.	1.8	14
506	Clucocorticoid augments lipopolysaccharide-induced activation of the IÂBÂ-dependent genes encoding the anti-microbial glycoproteins lipocalin 2 and pentraxin 3. Journal of Biochemistry, 2015, 157, 399-410.	0.9	14
507	Hu Antigen R Regulates Antiviral Innate Immune Responses through the Stabilization of mRNA for Polo-like Kinase 2. Journal of Immunology, 2018, 200, 3814-3824.	0.4	14
508	TLR9 and endogenous adjuvants of the whole blood-stage malaria vaccine. Expert Review of Vaccines, 2010, 9, 775-784.	2.0	13
509	5-Azacytidine-induced Protein 2 (AZI2) Regulates Bone Mass by Fine-tuning Osteoclast Survival. Journal of Biological Chemistry, 2015, 290, 9377-9386.	1.6	13
510	Identification of alternative splicing form of Stat2. FEBS Letters, 1996, 381, 191-194.	1.3	12
511	Toll-like receptor 7 (TLR7) modulates anti-nucleosomal autoantibody isotype and renal complement deposition in mice exposed to syngeneic late apoptotic cells. Annals of the Rheumatic Diseases, 2010, 69, 1195-1199.	0.5	12
512	Phosphoproteomic analysis of kinase-deficient mice reveals multiple TAK1 targets in osteoclast differentiation. Biochemical and Biophysical Research Communications, 2015, 463, 1284-1290.	1.0	12
513	Tollâ€Like Receptor 9 Deficiency Breaks Tolerance to RNAâ€Associated Antigens and Upâ€Regulates Tollâ€Like Receptor 7 Protein in <i>Sle1</i> Mice. Arthritis and Rheumatology, 2018, 70, 1597-1609.	2.9	12
514	Tribbles Homolog 3 Mediates the Development and Progression of Diabetic Retinopathy. Diabetes, 2021, 70, 1738-1753.	0.3	11
515	Immune Interventions of Human Diseases through Toll-Like Receptors. Advances in Experimental Medicine and Biology, 2009, 655, 63-80.	0.8	10
516	MyD88-Dependent Signaling Protects against Anthrax Lethal Toxin-Induced Impairment of Intestinal Barrier Function. Infection and Immunity, 2011, 79, 118-124.	1.0	10
517	TANK-binding kinase 1-dependent or -independent signaling elicits the cell-type-specific innate immune responses induced by the adenovirus vector. International Immunology, 2016, 28, 105-115.	1.8	10
518	The Cortical Neuroimmune Regulator TANK Affects Emotional Processing and Enhances Alcohol Drinking: A Translational Study. Cerebral Cortex, 2019, 29, 1736-1751.	1.6	10
519	Rhodobacter azotoformans LPS (RAP99-LPS) Is a TLR4 Agonist That Inhibits Lung Metastasis and Enhances TLR3-Mediated Chemokine Expression. Frontiers in Immunology, 2021, 12, 675909.	2.2	10
520	Effect of Toll-like receptor 2 and 4 of corneal fibroblasts on cytokine expression with co-cultured antigen presenting cells. Cytokine, 2011, 56, 265-271.	1.4	9
521	Haploinsufficiency of TANK-binding kinase 1 prepones age-associated neuroinflammatory changes without causing motor neuron degeneration in aged mice. Brain Communications, 2020, 2, fcaa133.	1.5	9
522	Conditional Deletion of TAK1 in T Cells Reveals a Pivotal Role of TCRαβ+ Intraepithelial Lymphocytes in Preventing Lymphopenia-Associated Colitis. PLoS ONE, 2015, 10, e0128761.	1.1	8

SHIZUO AKIRA

#	Article	IF	CITATIONS
523	B cell–intrinsic TBK1 is essential for germinal center formation during infection and vaccination in mice. Journal of Experimental Medicine, 2022, 219, .	4.2	8
524	Type-I IFN signaling is required for the induction of antigen-specific CD8+ T cell responses by adenovirus vector vaccine in the gut-mucosa. Biochemical and Biophysical Research Communications, 2012, 425, 89-93.	1.0	7
525	The Early Activation of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mrow><mml:msup><mml:mrow><mml:mtext>CD8</mml:mtext></mml:mrow><mml:mrow><m Cells Is Dependent on Type I IFN Signaling following Intramuscular Vaccination of Adenovirus Vector. BioMed Research International, 2014, 2014, 1-6.</m </mml:mrow></mml:msup></mml:mrow></mml:math>	ml:mtext>	∙+
526	Emerging molecules in the interface between skeletal system and innate immunity. Pharmacological Research, 2015, 99, 223-228.	3.1	7
527	Zinc Finger Protein St18 Protects against Septic Death by Inhibiting VEGF-A from Macrophages. Cell Reports, 2020, 32, 107906.	2.9	7
528	Loss of IL-33 enhances elastase-induced and cigarette smoke extract-induced emphysema in mice. Respiratory Research, 2021, 22, 150.	1.4	7
529	Loss of FCHSD1 leads to amelioration of chronic obstructive pulmonary disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
530	Toll Receptors. Current Protocols in Immunology, 2002, 52, 14.12.1-14.12.11.	3.6	6
531	Mechanisms of innate immune responses mediated by Toll-like receptors. Clinical and Applied Immunology Reviews, 2005, 5, 167-183.	0.4	6
532	T Helper 17 Promotes Induction of Antigen-Specific Gut-Mucosal Cytotoxic T Lymphocytes following Adenovirus Vector Vaccination. Frontiers in Immunology, 2017, 8, 1456.	2.2	6
533	Identification of a Transcriptional Regulatory Factor for Human Aromatase Cytochrome <i>P</i> 450 Gene Expression as Nuclear Factor Interleukinâ€6 (NFâ€HL6), a Member of the CCAAT/Enhancerâ€Binding Protein Family. FEBS Journal, 1995, 231, 292-299.	0.2	5
534	Negative Regulators in Toll-like Receptor Responses. Cornea, 2010, 29, S13-S19.	0.9	5
535	Toll-Like Receptor Signaling and Its Inducible Proteins. , 0, , 447-453.		5
536	Netrins as prophylactic targets in skeletal diseases: A double-edged sword?. Pharmacological Research, 2017, 122, 46-52.	3.1	4
537	Neutrophil Gelatinase–Associated Lipocalin Protects Acinar Cells From Cerulein-Induced Damage During Acute Pancreatitis. Pancreas, 2020, 49, 1297-1306.	0.5	4
538	Novel insights into the pathogenesis of lung fibrosis: the RBM7–NEAT1–CXCL12–SatM axis at fibrosis onset. International Immunology, 2021, 33, 659-663.	1.8	4
539	Immune Recognition of Nucleic Acids and Their Metabolites. Nucleic Acids and Molecular Biology, 2010, , 209-227.	0.2	4
540	PRRs in pathogen recognition. Open Life Sciences, 2006, 1, 299-313.	0.6	3

#	Article	IF	CITATIONS
541	Toll-Like Receptors. , 2004, , 190-194.		2
542	Therapeutic targeting of Toll-like receptors. Drug Discovery Today: Therapeutic Strategies, 2004, 1, 299-304.	0.5	2
543	Errata to "Pathogen recognition by innate immunity and its signaling". Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2009, 85, 216.	1.6	2
544	Pathogen Associated Molecular Pattern Recognition in Innate Immunity. Ensho Saisei, 2003, 23, 211-217.	0.2	2
545	Preliminary evidence that overexpression of nuclear factor for IL6 expression (NF-IL6) in NIH3T3 cells may be related to malignant transformation. Cell Research, 1994, 4, 191-200.	5.7	1
546	TLR4 signaling: negative regulation by degradation. Blood, 2007, 110, 794-794.	0.6	1
547	Intestine and Innate Immunity. Bioscience and Microflora, 2009, 28, 69-74.	0.5	1
548	Trim41 is required to regulate chromosome axis protein dynamics and meiosis in male mice. PLoS Genetics, 2022, 18, e1010241.	1.5	1
549	Analysis of Host Defensive Mechanism against listeria Infection with NF-IL6 Deficient Mice Proceedings of the Japanese Society of Animal Models for Human Diseases, 1995, 11, 44-48.	0.1	0
550	Toll-like receptor signaling. , 0, , 27-50.		0
551	Functions of Toll-like receptors: lessons from KO mice. Comptes Rendus - Biologies, 2004, 327, 581-581.	0.1	0
552	The Induction of Dendritic Cell Activation and Maturation by Toll-Like Receptor Signaling. , 2005, , 147-161.		0
553	Toll-like receptors in antiviral immunity: more than just response. Future Virology, 2006, 1, 313-316.	0.9	0
554	Receptors Toll-Like Receptors. , 2021, , 329-334.		0
555	Signal Transducer and Activator of Transcription-3 Is Critical for Uterine Implantation and Decidualization Biology of Reproduction, 2012, 87, 407-407.	1.2	0
556	Transcriptional control of acute phase protein genes in hepatocytes Seibutsu Butsuri Kagaku, 1992, 36, 43-46.	0.1	0
557	Cytoplasmic Pattern Receptors (RIG-I and MDA-5) and Signaling in Viral Infections. , 0, , 29-38.		0

#	Article	IF	CITATIONS
559	The endoribonuclease Regnase-1: key molecule in inflammatory and immune responses. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 2-PL.	0.0	0
560	Recognition of Pathogens: Toll-Like Receptors. , 2008, , 1-36.		0
561	The microsomal prostaglandin E synthase-1/PGE ₂ Â/EP4 axis induces blood flow recovery via recruitment of regulatory T cells. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2022, 95, 2-0-100.	0.0	0