
Krzysztof Kalinowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1245259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of Blockchain Technology in Production Scheduling and Management of Human Resources Competencies. Sensors, 2022, 22, 2844.	3.8	10
2	Initial Study into the Possible Use of Digital Sound Processing for the Development of Automatic Longwall Shearer Operation. Energies, 2021, 14, 2877.	3.1	3
3	A Study of the Human Factor in Industry 4.0 Based on the Automotive Industry. Energies, 2021, 14, 6833.	3.1	14
4	A Comparison Analysis of the Computer Simulation Results of a Real Production System. Advances in Intelligent Systems and Computing, 2020, , 344-354.	0.6	3
5	Concurrent Planning and Scheduling of Heterogeneous Production System. Case Study. Advances in Intelligent Systems and Computing, 2020, , 366-375.	0.6	0
6	Practical Approach of Flexible Job Shop Scheduling Using Costs and Finishing Times of Operations. Advances in Intelligent Systems and Computing, 2019, , 391-400.	0.6	3
7	Production Scheduling with Quantitative and Qualitative Selection of Human Resources. Advances in Intelligent Systems and Computing, 2018, , 245-253.	0.6	1
8	A computer simulation as a tool for a production system analysis and optimization. IOP Conference Series: Materials Science and Engineering, 2018, 400, 022033.	0.6	3
9	The Kanban system for the assembly process of the model of a forklift. IOP Conference Series: Materials Science and Engineering, 2018, 400, 022043.	0.6	0
10	Tensile tests of specimens made of selected group of the filament materials manufactured with FDM method. MATEC Web of Conferences, 2017, 112, 04017.	0.2	12
11	Production planning and scheduling with material handling using modelling and simulation. MATEC Web of Conferences, 2017, 112, 09015.	0.2	9
12	Algorithms of control parameters selection for automation of FDM 3D printing process. MATEC Web of Conferences, 2017, 112, 05011.	0.2	2
13	Distribution of time to buffer overflow in a finite-buffer manufacturing model with unreliable machine. MATEC Web of Conferences, 2017, 112, 05005.	0.2	1
14	An attempt of CNC machining cycle's application as a tool of the design feature library elaboration. MATEC Web of Conferences, 2017, 112, 06019.	0.2	2
15	Ant colony optimisation for scheduling of flexible job shop with multi-resources requirements. MATEC Web of Conferences, 2017, 112, 06018.	0.2	2
16	The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. IOP Conference Series: Materials Science and Engineering, 2017, 227, 012033.	0.6	116
17	Integration of Manufacturing Functions for SME. Holonic-Based Approach. Advances in Intelligent Systems and Computing, 2017, , 464-473.	0.6	13
18	The comparison of predictive scheduling algorithms for different sizes of job shop scheduling problems. IOP Conference Series: Materials Science and Engineering, 2016, 145, 042019.	0.6	0

Krzysztof Kalinowski

#	Article	IF	CITATIONS
19	Application of case-based reasoning for machining parameters selection. IOP Conference Series: Materials Science and Engineering, 2016, 145, 042011.	0.6	2
20	Multi-criteria evaluation methods in the production scheduling. IOP Conference Series: Materials Science and Engineering, 2016, 145, 022019.	0.6	3
21	Study on Transient Queueing Delay in a Single-Channel Queueing Model with Setup and Closedown Times. Communications in Computer and Information Science, 2016, , 464-475.	0.5	5
22	Integration of scheduling and discrete event simulation systems to improve production flow planning. IOP Conference Series: Materials Science and Engineering, 2016, 145, 022018.	0.6	5
23	A method of computer aided design with self-generative models in NX Siemens environment. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012123.	0.6	4
24	Estimation of overall equipment effectiveness using simulation programme. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012155.	0.6	9
25	Scheduling Schemes Based on Searching the Aggregated Graph of Operations Planning Sequence. Applied Mechanics and Materials, 2015, 809-810, 1462-1467.	0.2	1
26	The laboratory station for tyres grip testing on different surfaces. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012092.	0.6	0
27	Time-dependent solution for the manufacturing line with unreliable machine and batched arrivals. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012094.	0.6	4
28	A survey on methods of design features identification. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012120.	0.6	2
29	Production scheduling with discrete and renewable additional resources. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012132.	0.6	4
30	The role of the production scheduling system in rescheduling. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012140.	0.6	2
31	Time-series pattern recognition with an immune algorithm. IOP Conference Series: Materials Science and Engineering, 2015, 95, 012110.	0.6	7
32	The Graph of Operations Planning Sequence of a Production Order for Scheduling with Mixed Planning Strategies and Alternatives. Applied Mechanics and Materials, 2015, 809-810, 1420-1425.	0.2	0
33	Preparatory Stages of the Production Scheduling of Complex and Multivariant Products Structures. Advances in Intelligent Systems and Computing, 2015, , 475-483.	0.6	13
34	Interaction of the Decision Maker in the Process of Production Scheduling. Advanced Materials Research, 2014, 1036, 830-833.	0.3	8
35	On Effect of Model Parameters on Departure Process in a Production System with Failures. Advanced Materials Research, 2014, 1036, 927-932.	0.3	2
36	The Procedure of Reaction to Unexpected Events in Scheduling of Manufacturing Systems with Discrete Production Flow. Advanced Materials Research, 2014, 1036, 840-845.	0.3	4

#	Article	IF	CITATIONS
37	Pareto Optimality of Production Schedules in the Stage of Populations Selection of the MOIA Immune Algorithm. Applied Mechanics and Materials, 2014, 657, 869-873.	0.2	10
38	Sensitivity Analysis of Predictive Scheduling Algorithms. Advanced Materials Research, 2014, 1036, 921-926.	0.3	9
39	On Pareto Optimal Solution for Production and Maintenance Jobs Scheduling Problem in a Job Shop and Flow Shop with an Immune Algorithm. Advanced Materials Research, 2014, 1036, 875-880.	0.3	11
40	A Production Scheduling Model with Maintenance. Advanced Materials Research, 2014, 1036, 885-890.	0.3	21
41	A Survey on Capp Systems Development Methods. Advanced Materials Research, 2013, 837, 387-392.	0.3	11
42	The Graph Representation of Multivariant and Complex Processes for Production Scheduling. Advanced Materials Research, 2013, 837, 422-427.	0.3	20
43	The Hybrid Method of Knowledge Representation in a CAPP Knowledge Based System. Lecture Notes in Computer Science, 2012, , 284-295.	1.3	25
44	Integration Production Planning and Scheduling Systems for Determination of Transitional Phases in Repetitive Production. Lecture Notes in Computer Science, 2012, , 274-283.	1.3	29
45	Object-Oriented Models in an Integration of CAD/CAPP/CAP Systems. Lecture Notes in Computer Science, 2011, , 405-412.	1.3	25
46	Integration of the CAD/CAPP/PPC systems. Journal of Materials Processing Technology, 2005, 164-165, 1358-1368.	6.3	35
47	Predictive - Reactive Strategy for Real Time Scheduling of Manufacturing Systems. Applied Mechanics and Materials, 0, 307, 470-473.	0.2	26
48	Estimation of Reliability Characteristics in a Production Scheduling Model with Failures and Time-Changing Parameters Described by Gamma and Exponential Distributions. Advanced Materials Research, 0, 837, 116-121.	0.3	22
49	UML Models of Design and Knowledge Representation for Technical Production Preparation Needs. Advanced Materials Research, 0, 837, 369-374.	0.3	5
50	The Model of Discrete Production Scheduling System in UML Notation - Classes Diagrams. Advanced Materials Research, 0, 837, 416-421.	0.3	11
51	On Departure Process in a Production Model with Cyclic Working and Repair Periods. Advanced Materials Research, 0, 1036, 846-851.	0.3	2
52	Predictive and Reactive Scheduling for a Critical Machine of a Production System. Advanced Materials Research, 0, 1036, 909-914.	0.3	12
53	An Attempt to Application of Chain Codes for Design Similarity Evaluation. Advanced Materials Research, 0, 1036, 897-902.	0.3	1
54	On Transient Queue-Size Distribution in a Single-Machine Production System with Breakdowns. Advanced Materials Research, 0, 1036, 505-510.	0.3	7

Krzysztof Kalinowski

#	Article	IF	CITATIONS
55	A Methodology of CAPP/CAP Systems Integration Based on a Product Intermediate State Representation. Advanced Materials Research, 0, 1036, 915-920.	0.3	0
56	Semi-Automated Data Acquisition for Management of the Company in Non-Automated Production System – Case Study. Applied Mechanics and Materials, 0, 809-810, 1510-1515.	0.2	0
57	Production orders planning using additional backward pass scheduling approach. IOP Conference Series: Materials Science and Engineering, 0, 400, 062015.	0.6	2
58	The initial considerations and tests on the use of real time locating system in manufacturing processes improvement. IOP Conference Series: Materials Science and Engineering, 0, 400, 042013.	0.6	6
59	The influence of algorithms for basic-schedule generation on the performance of predictive and reactive schedules. IOP Conference Series: Materials Science and Engineering, 0, 400, 022042.	0.6	4
60	Integration of manufacturing operations management tools and discrete event simulation. IOP Conference Series: Materials Science and Engineering, 0, 400, 022037.	0.6	8
61	Schedule generation schemes for flexible manufacturing systems with additional resources. IOP Conference Series: Materials Science and Engineering, 0, 400, 062016.	0.6	Ο
62	The design optimisation of the self-locking moving device using CAD software. IOP Conference Series: Materials Science and Engineering, 0, 400, 022034.	0.6	0