Wenjian Gan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1244424/publications.pdf

Version: 2024-02-01

304602 454834 2,744 29 22 30 h-index citations g-index papers 30 30 30 5338 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes and Development, 2011, 25, 2041-2056.	2.7	361
2	Ptdlns(3,4,5) <i>P</i> 3-Dependent Activation of the mTORC2 Kinase Complex. Cancer Discovery, 2015, 5, 1194-1209.	7.7	297
3	Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature, 2014, 508, 541-545.	13.7	285
4	Prostate cancer–associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nature Medicine, 2017, 23, 1063-1071.	15.2	240
5	Sin 1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nature Cell Biology, 2013, 15, 1340-1350.	4.6	216
6	SPOP Promotes Ubiquitination and Degradation of the ERG Oncoprotein to Suppress Prostate Cancer Progression. Molecular Cell, 2015, 59, 917-930.	4.5	172
7	pVHL suppresses kinase activity of Akt in a proline-hydroxylation–dependent manner. Science, 2016, 353, 929-932.	6.0	165
8	TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature, 2017, 545, 365-369.	13.7	136
9	AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nature Cell Biology, 2019, 21, 226-237.	4.6	109
10	Inhibition of Rb Phosphorylation Leads to mTORC2-Mediated Activation of Akt. Molecular Cell, 2016, 62, 929-942.	4.5	87
11	The mTOR–S6K pathway links growth signalling to DNA damage response by targeting RNF168. Nature Cell Biology, 2018, 20, 320-331.	4.6	86
12	Akt-Mediated Phosphorylation of XLF Impairs Non-Homologous End-Joining DNA Repair. Molecular Cell, 2015, 57, 648-661.	4.5	59
13	K63-linked polyubiquitin chains bind to DNA to facilitate DNA damage repair. Science Signaling, 2018, $11,$	1.6	56
14	LATS suppresses mTORC1 activity to directly coordinate Hippo and mTORC1 pathways in growth control. Nature Cell Biology, 2020, 22, 246-256.	4.6	56
15	PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discovery, 2019, 9, 1306-1323.	7.7	54
16	SPOP Promotes Nanog Destruction to Suppress Stem Cell Traits and Prostate Cancer Progression. Developmental Cell, 2019, 48, 329-344.e5.	3.1	53
17	Hippo signaling is intrinsically regulated during cell cycle progression by APC/C ^{Cdh1} . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9423-9432.	3.3	48
18	Prostate cancer-associated mutation in SPOP impairs its ability to target Cdc20 for poly-ubiquitination and degradation. Cancer Letters, 2017, 385, 207-214.	3.2	43

#	Article	IF	CITATIONS
19	PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis. Nature Communications, 2021, 12, 3444.	5.8	39
20	Dual phosphorylation of Sin1 at T86 and T398 negatively regulates mTORC2 complex integrity and activity. Protein and Cell, 2014, 5, 171-177.	4.8	37
21	Tumor suppressor SPOP ubiquitinates and degrades EglN2 to compromise growth of prostate cancer cells. Cancer Letters, 2017, 390, 11-20.	3.2	37
22	Activation-induced cytidine deaminase (AID)-dependent somatic hypermutation requires a splice isoform of the serine/arginine-rich (SR) protein SRSF1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1216-1221.	3.3	28
23	DNA-PK promotes activation of the survival kinase AKT in response to DNA damage through an mTORC2-ECT2 pathway. Science Signaling, 2022, 15, eabh2290.	1.6	16
24	The Roles of Post-Translational Modifications on mTOR Signaling. International Journal of Molecular Sciences, 2021, 22, 1784.	1.8	15
25	Genetic fusions favor tumorigenesis through degron loss in oncogenes. Nature Communications, 2021, 12, 6704.	5.8	14
26	Two BTB proteins function redundantly as negative regulators of defense against pathogens in <i>Arabidopsis</i> . Botany, 2010, 88, 953-960.	0.5	10
27	The p85 isoform of the kinase S6K1 functions as a secreted oncoprotein to facilitate cell migration and tumor growth. Science Signaling, 2018, 11 , .	1.6	10
28	Akt promotes tumorigenesis in part through modulating genomic instability via phosphorylating XLF. Nucleus, 2015, 6, 261-265.	0.6	9
29	Cell cycle status dictates effectiveness of rapamycin. Cell Cycle, 2015, 14, 2556-2557.	1.3	3