
Yvonne M Buckley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1244346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The macroecology of plant populations from local to global scales. New Phytologist, 2022, 233, 1038-1050.	7.3	16
2	Common species contribute little to spatial patterns of functional diversity across scales in coastal grasslands. Journal of Ecology, 2022, 110, 1149-1160.	4.0	4
3	Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology, 2021, 102, e03218.	3.2	62
4	Climatic and evolutionary contexts are required to infer plant life history strategies from functional traits at a global scale. Ecology Letters, 2021, 24, 970-983.	6.4	19
5	Fertilized graminoids intensify negative drought effects on grassland productivity. Global Change Biology, 2021, 27, 2441-2457.	9.5	39
6	Phenotypic plasticity masks rangeâ€wide genetic differentiation for vegetative but not reproductive traits in a shortâ€lived plant. Ecology Letters, 2021, 24, 2378-2393.	6.4	21
7	Use of seasonal epilithic diatom assemblages to evaluate ecological status in Irish lakes. Ecological Indicators, 2021, 129, 107853.	6.3	8
8	Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally. Ecology and Evolution, 2021, 11, 17744-17761.	1.9	8
9	Low concentrations of fertilizer and herbicide alter plant growth and interactions with flower-visiting insects. Agriculture, Ecosystems and Environment, 2020, 304, 107141.	5.3	29
10	Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4218-4227.	7.1	108
11	Predicting the ecosystem-wide impacts of eradication with limited information using a qualitative modelling approach Ecological Modelling, 2020, 430, 109122.	2.5	4
12	Dominant native and nonâ€native graminoids differ in key leaf traits irrespective of nutrient availability. Global Ecology and Biogeography, 2020, 29, 1126-1138.	5.8	11
13	A system wide approach to managing zoo collections for visitor attendance and in situ conservation. Nature Communications, 2020, 11, 584.	12.8	20
14	Consequences of neglecting cryptic life stages from demographic models. Ecological Modelling, 2019, 408, 108723.	2.5	18
15	Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nature Ecology and Evolution, 2019, 3, 1217-1224.	7.8	168
16	Managing uncertainty in movement knowledge for environmental decisions. Conservation Letters, 2019, 12, e12620.	5.7	6
17	Taxonomy, ecology and analysis of type material of some small Encyonopsis with description of new species in Ireland. Phytotaxa, 2019, 395, 89.	0.3	4
18	Demographic amplification is a predictor of invasiveness among plants. Nature Communications, 2019, 10. 5602.	12.8	23

#	Article	IF	CITATIONS
19	Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecology and Evolution, 2019, 3, 400-406.	7.8	97
20	Reviewing research priorities in weed ecology, evolution and management: a horizon scan. Weed Research, 2018, 58, 250-258.	1.7	78
21	Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution, 2018, 2, 50-56.	7.8	172
22	Policy-oriented environmental research: What is it worth?. Environmental Science and Policy, 2018, 86, 64-71.	4.9	12
23	Managing Natural Capital Stocks for the Provision of Ecosystem Services. Conservation Letters, 2017, 10, 211-220.	5.7	50
24	Invasion ecology: Unpredictable arms race in a jam jar. Nature Ecology and Evolution, 2017, 1, 28.	7.8	4
25	Less favourable climates constrain demographic strategies in plants. Ecology Letters, 2017, 20, 969-980.	6.4	83
26	Predicting invasion winners and losers under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4040-4041.	7.1	26
27	Effect of management on natural capital stocks underlying ecosystem service provision: a â€~provider group' approach. Biodiversity and Conservation, 2017, 26, 3289-3305.	2.6	4
28	Disentangling the four demographic dimensions of species invasiveness. Journal of Ecology, 2016, 104, 1745-1758.	4.0	55
29	Prioritizing management actions for invasive populations using cost, efficacy, demography and expert opinion for 14 plant species worldâ€wide. Journal of Applied Ecology, 2016, 53, 305-316.	4.0	33
30	Biocontrol insect impacts population growth of its target plant species but not an incidentally used nontarget. Ecosphere, 2016, 7, e01280.	2.2	18
31	<scp>COMADRE</scp> : a global data base of animal demography. Journal of Animal Ecology, 2016, 85, 371-384.	2.8	189
32	Does the biogeographic origin of species matter? Ecological effects of native and nonâ€native species andÂthe use of origin to guide management. Journal of Ecology, 2016, 104, 4-17.	4.0	109
33	Extrapolating demography with climate, proximity and phylogeny: approach with caution. Ecology Letters, 2016, 19, 1429-1438.	6.4	29
34	Ecologically sustainable weed management: How do we get from proofâ€ofâ€concept to adoption?. Ecological Applications, 2016, 26, 1352-1369.	3.8	63
35	Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	12.6	16
36	Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529, 390-393.	27.8	564

#	Article	IF	CITATIONS
37	Breaking and remaking a seed and seed predator interaction in the introduced range of Scotch Broom (<i>Cytisus scoparius</i>) in New Zealand. Journal of Ecology, 2016, 104, 182-192.	4.0	7
38	Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 230-235.	7.1	290
39	Grassland productivity limited by multiple nutrients. Nature Plants, 2015, 1, 15080.	9.3	403
40	A Long-Term Experimental Case Study of the Ecological Effectiveness and Cost Effectiveness of Invasive Plant Management in Achieving Conservation Goals: Bitou Bush Control in Booderee National Park in Eastern Australia. PLoS ONE, 2015, 10, e0128482.	2.5	25
41	Guidelines for Using Movement Science to Inform Biodiversity Policy. Environmental Management, 2015, 56, 791-801.	2.7	36
42	Distribution, demography and dispersal model of spatial spread of invasive plant populations with limited data. Methods in Ecology and Evolution, 2015, 6, 782-794.	5.2	31
43	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	12.8	143
44	The <scp>compadre</scp> <scp>P</scp> lant <scp>M</scp> atrix <scp>D</scp> atabase: an open online repository for plant demography. Journal of Ecology, 2015, 103, 202-218.	4.0	260
45	A decision framework for management of conflicting production and biodiversity goals for a commercially valuable invasive species. Agricultural Systems, 2014, 125, 1-11.	6.1	26
46	An ecological paradox: More woodland predators and less artificial nest predation in landscapes colonized by noisy miners. Austral Ecology, 2014, 39, 255-266.	1.5	7
47	Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 2014, 508, 521-525.	27.8	409
48	Managing the side effects of invasion control. Science, 2014, 344, 975-976.	12.6	39
49	Patterns of introduced species interactions affect multiple aspects of network structure in plant–pollinator communities. Ecology, 2014, 95, 2953-2963.	3.2	34
50	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	27.8	669
51	Optimizing taxonomic resolution and sampling effort to design costâ€effective ecological models for environmental assessment. Journal of Applied Ecology, 2014, 51, 1722-1732.	4.0	34
52	Dispersal Capacity Predicts Both Population Genetic Structure and Species Richness in Reef Fishes. American Naturalist, 2014, 184, 52-64.	2.1	70
53	Movement, impacts and management of plant distributions in response to climate change: insights from invasions. Oikos, 2013, 122, 1265-1274.	2.7	36
54	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology, 2013, 19, 3677-3687.	9.5	70

#	Article	IF	CITATIONS
55	Incidence of competitors and landscape structure as predictors of woodland-dependent birds. Landscape Ecology, 2013, 28, 1975-1987.	4.2	7
56	Two colonisation stages generate two different patterns of genetic diversity within native and invasive ranges of Ulex europaeus. Heredity, 2013, 111, 355-363.	2.6	27
57	Predicting species distributions for conservation decisions. Ecology Letters, 2013, 16, 1424-1435.	6.4	1,375
58	The behavior of multiple independent managers and ecological traits interact to determine prevalence of weeds. , 2013, 23, 523-536.		30
59	Rapid genetic turnover in populations of the insect pest <i>Bemisia tabaci</i> Middle East: Asia Minor 1 in an agricultural landscape. Bulletin of Entomological Research, 2012, 102, 539-549.	1.0	18
60	Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richness― Science, 2012, 335, 1441-1441.	12.6	30
61	CORSICAN PINE INVASION. Bulletin of the Ecological Society of America, 2012, 93, 173-175.	0.2	1
62	Seed terminal velocity, wind turbulence, and demography drive the spread of an invasive tree in an an analytical model. Ecology, 2012, 93, 368-377.	3.2	57
63	Reproductive ecology of Pinus nigra in an invasive population: individual- and population-level variation in seed production and timing of seed release. Annals of Forest Science, 2012, 69, 467-476.	2.0	13
64	An invasive grass shows colonization advantages over native grasses under conditions of low resource availability. Plant Ecology, 2012, 213, 1117-1130.	1.6	17
65	Cost-benefit analysis for intentional plant introductions under uncertainty. Biological Invasions, 2012, 14, 839-849.	2.4	24
66	Modeling population dynamics, landscape structure, and management decisions for controlling the spread of invasive plants. Annals of the New York Academy of Sciences, 2012, 1249, 72-83.	3.8	41
67	Increased population growth rate in invasive polyploid <i>Centaurea stoebe</i> in a common garden. Ecology Letters, 2012, 15, 947-954.	6.4	58
68	Biological control as an invasion process: disturbance and propagule pressure affect the invasion success of Lythrum salicaria biological control agents. Biological Invasions, 2012, 14, 255-271.	2.4	25
69	Plastic Traits of an Exotic Grass Contribute to Its Abundance but Are Not Always Favourable. PLoS ONE, 2012, 7, e35870.	2.5	23
70	Non-natives: 141 scientists object. Nature, 2011, 475, 36-36.	27.8	197
71	General rules for managing and surveying networks of pests, diseases, and endangered species. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8323-8328.	7.1	177
72	Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecology Letters, 2011, 14, 274-281.	6.4	88

#	Article	IF	CITATIONS
73	Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.	12.6	463
74	What are the key drivers of spread in invasive plants: dispersal, demography or landscape: and how can we use this knowledge to aid management?. Biological Invasions, 2011, 13, 1649-1661.	2.4	90
75	Early emergence and resource availability can competitively favour natives over a functionally similar invader. Oecologia, 2010, 163, 775-784.	2.0	43
76	Long term climate effects are confounded with the biological control programme against the invasive weed Baccharis halimifolia in Australia. Biological Invasions, 2010, 12, 3145-3155.	2.4	20
77	Neighbourhood effects influence drought-induced mortality of savanna trees in Australia. Journal of Vegetation Science, 2010, 21, 573-585.	2.2	26
78	Interâ€population variation in seed longevity for two invasive weeds: <i>Chrysanthemoides monilifera</i> ssp. <i>monilifera</i> (boneseed) and ssp. <i>rotundata</i> (bitou bush). Weed Research, 2010, 50, 67-75.	1.7	17
79	Drivers of lowland rain forest community assembly, species diversity and forest structure on islands in the tropical South Pacific. Journal of Ecology, 2010, 98, 87-95.	4.0	77
80	Empirical tests of lifeâ€history evolution theory using phylogenetic analysis of plant demography. Journal of Ecology, 2010, 98, 334-344.	4.0	56
81	Alternative states models provide an effective framework for invasive species control and restoration of native communities. Journal of Applied Ecology, 2010, 47, 96-105.	4.0	80
82	Restoration thinning accelerates structural development and carbon sequestration in an endangered Australian ecosystem. Journal of Applied Ecology, 2010, 47, 681-691.	4.0	72
83	Disruption of an exotic mutualism can improve management of an invasive plant: varroa mite, honeybees and biological control of Scotch broomCytisus scopariusin New Zealand. Journal of Applied Ecology, 2010, 47, 309-317.	4.0	19
84	Causes and consequences of variation in plant population growth rate: a synthesis of matrix population models in a phylogenetic context. Ecology Letters, 2010, 13, 1182-1197.	6.4	161
85	Preâ€zygotic parental environment modulates seed longevity. Austral Ecology, 2010, 35, 837-848.	1.5	45
86	Impacts of Invasive Plants on Australian Rangelands. Rangelands, 2010, 32, 48-51.	1.9	6
87	Diet breadth influences how the impact of invasive plants is propagated through food webs. Ecology, 2010, 91, 1063-1074.	3.2	47
88	Agricultural legacy, climate, and soil influence the restoration and carbon potential of woody regrowth in Australia. , 2010, 20, 1838-1850.		26
89	Spatial variability in ecosystem services: simple rules for predatorâ€mediated pest suppression. Ecological Applications, 2010, 20, 2322-2333.	3.8	59
90	Management recommendations for shortâ€lived weeds depend on model structure and explicit characterization of density dependence. Methods in Ecology and Evolution, 2010, 1, 158-167.	5.2	12

#	Article	IF	CITATIONS
91	Refined Global Analysis of <i>Bemisia tabaci</i> (Hemiptera: Sternorrhyncha: Aleyrodoidea:) Tj ETQq1 1 0.784314 of the Entomological Society of America, 2010, 103, 196-208.	rgBT /Ove 2.5	rlock 10 Tf 585
92	Patchy herbivore and pathogen damage throughout the introduced Australian range of groundsel bush, Baccharis halimifolia, is influenced by rainfall, elevation, temperature, plant density and size. Biological Control, 2009, 50, 13-20.	3.0	15
93	Review of approaches to evaluate the effectiveness of weed biological control agents. Biological Control, 2009, 51, 1-15.	3.0	126
94	Seed predators and the evolutionarily stable flowering strategy in the invasive plant, Carduus nutans. Evolutionary Ecology, 2009, 23, 893-906.	1.2	16
95	Integral projection models perform better for small demographic data sets than matrix population models: a case study of two perennial herbs. Journal of Applied Ecology, 2009, 46, 1048-1053.	4.0	89
96	Multiple life stages with multiple replicated density levels are required to estimate density dependence for plants. Oikos, 2009, 118, 1164-1173.	2.7	18
97	Surveillance protocols for management of invasive plants: modelling Chilean needle grass (<i>Nassella neesiana</i>) in Australia. Diversity and Distributions, 2009, 15, 577-589.	4.1	30
98	Carbon for conservation: Assessing the potential for win–win investment in an extensive Australian regrowth ecosystem. Agriculture, Ecosystems and Environment, 2009, 134, 1-7.	5.3	45
99	Managing the impact of invasive species: the value of knowing the density–impact curve. Ecological Applications, 2009, 19, 376-386.	3.8	172
100	Apparent competition can compromise the safety of highly specific biocontrol agents. Ecology Letters, 2008, 11, 690-700.	6.4	97
101	The role of research for integrated management of invasive species, invaded landscapes and communities. Journal of Applied Ecology, 2008, 45, 397-402.	4.0	81
102	General guidelines for invasive plant management based on comparative demography of invasive and native plant populations. Journal of Applied Ecology, 2008, 45, 1124-1133.	4.0	156
103	Managing beyond the invader: manipulating disturbance of natives simplifies control efforts. Journal of Applied Ecology, 2008, 45, 1143-1151.	4.0	27
104	Offspring Size Plasticity in Response to Intraspecific Competition: An Adaptive Maternal Effect across Lifeâ€History Stages. American Naturalist, 2008, 171, 225-237.	2.1	236
105	An experimental study of fire and moisture stress on the survivorship of savanna eucalypt seedlings. Australian Journal of Botany, 2008, 56, 693.	0.6	7
106	Disturbance, invasion and re-invasion: managing the weed-shaped hole in disturbed ecosystems. Ecology Letters, 2007, 10, 809-817.	6.4	143
107	Restoration potential of Brigalow regrowth: Insights from a cross-sectional study in southern Queensland. Ecological Management and Restoration, 2007, 8, 218-221.	1.5	21
108	Testing the role of genetic factors across multiple independent invasions of the shrub Scotch broom (Cytisus scoparius). Molecular Ecology, 2007, 16, 4662-4673.	3.9	64

#	Article	IF	CITATIONS
109	Isolation and characterization of polymorphic microsatellite loci for the invasive plant Cytisus scoparius. Molecular Ecology Notes, 2006, 7, 100-102.	1.7	4
110	Management of plant invasions mediated by frugivore interactions. Journal of Applied Ecology, 2006, 43, 848-857.	4.0	151
111	A modelling approach to estimate the effect of exotic pollinators on exotic weed population dynamics: bumblebees and broom in Australia. Diversity and Distributions, 2006, 12, 593-600.	4.1	27
112	Density dependence in invasive plants: demography, herbivory, spread and evolution. , 2006, , 109-123.		4
113	Stable coexistence of an invasive plant and biocontrol agent: a parameterized coupled plant-herbivore model. Journal of Applied Ecology, 2005, 42, 70-79.	4.0	59
114	Slowing down a pine invasion despite uncertainty in demography and dispersal. Journal of Applied Ecology, 2005, 42, 1020-1030.	4.0	145
115	Modelling integrated weed management of an invasive shrub in tropical Australia. Journal of Applied Ecology, 2004, 41, 547-560.	4.0	90
116	Title is missing!. Plant Ecology, 2003, 167, 45-56.	1.6	7
117	Demography and management of the invasive plant species Hypericum perforatum. I. Using multi-level mixed-effects models for characterizing growth, survival and fecundity in a long-term data set. Journal of Applied Ecology, 2003, 40, 481-493.	4.0	93
118	Demography and management of the invasive plant species Hypericum perforatum. II. Construction and use of an individual-based model to predict population dynamics and the effects of management strategies. Journal of Applied Ecology, 2003, 40, 494-507.	4.0	67
119	ARE INVASIVES BIGGER? A GLOBAL STUDY OF SEED SIZE VARIATION IN TWO INVASIVE SHRUBS. Ecology, 2003, 84, 1434-1440.	3.2	89
120	Trichogramma zahiri (Hymenoptera: Trichogrammatidae) an egg parasitoid of the rice hispa Dicladispa armigera (Coleoptera: Chrysomelidae) in Bangladesh. Bulletin of Entomological Research, 2002, 92, 529-537.	1.0	10
121	Interactions between density-dependent processes, population dynamics and control of an invasive plant species, Tripleurospermum perforatum (scentless chamomile). Ecology Letters, 2001, 4, 551-558.	6.4	61
122	Investigations in commonness and rarity: a comparative analysis of co-occurring, congeneric Mexican trees. Ecology Letters, 2001, 4, 618-627.	6.4	37
123	Impact of roadside burning on genetic diversity in aÂhighâ€biomass invasive grass. Evolutionary Applications, 0, , .	3.1	2