László Toth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1244125/publications.pdf

Version: 2024-02-01

187	7,697	44	80
papers	citations	h-index	g-index
189	189	189	3312
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Plastic energy-based analytical approach to predict the mechanical response of two-phase materials with application to dual-phase steels. European Journal of Mechanics, A/Solids, 2022, 91, 104414.	3.7	1
2	Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Research Letters, 2022, 10, 163-256.	8.7	215
3	Modeling of axial strain in free-end torsion of textured copper. International Journal of Materials Research, 2022, 96, 1038-1043.	0.3	O
4	3D simulation of texture evolution induced grain coarsening in FCC polycrystals during severe plastic deformation. IOP Conference Series: Materials Science and Engineering, 2021, 1121, 012045.	0.6	1
5	Microstructure, Texture and Mechanical Properties in Aluminum Produced by Friction-Assisted Lateral Extrusion. Materials, 2021, 14, 2465.	2.9	9
6	A new macroscopic strain hardening function based on microscale crystal plasticity and its application in polycrystal modeling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141634.	5.6	7
7	Modeling of Crystallographic Texture in Plastic Flow Machining. Advanced Engineering Materials, 2020, 22, 1900661.	3.5	9
8	Unlocking Deformation Path in Asymmetric Rolling by Texture Simulation. Materials, 2020, 13, 101.	2.9	9
9	Effect of strain path change on texture and microstructure evolution in asymmetric rolled extra-low carbon steel. Materials Characterization, 2020, 169, 110578.	4.4	14
10	Strain hardening, twinning and texture evolution in magnesium alloy using the all twin variant polycrystal modelling approach. International Journal of Plasticity, 2020, 128, 102660.	8.8	42
11	Polycrystal Simulation of Texture-Induced Grain Coarsening during Severe Plastic Deformation. Materials, 2020, 13, 5834.	2.9	1
12	High Pressure Tube Twisting for Producing Ultra Fine Grained Materials: A Review. Materials Transactions, 2019, 60, 1177-1191.	1.2	23
13	Tailoring One-Pass Asymmetric Rolling of Extra Low Carbon Steel for Shear Texture and Recrystallization. Materials, 2019, 12, 1935.	2.9	10
14	The mechanics of High Pressure Compressive Shearing with application to ARMCO® steel. Materials Characterization, 2019, 154, 127-137.	4.4	11
15	An analytical model to predict strain-hardening behaviour and twin volume fraction in a profoundly twinning magnesium alloy. International Journal of Plasticity, 2019, 119, 273-290.	8.8	33
16	Materials knowledge system for nonlinear composites. Computer Methods in Applied Mechanics and Engineering, 2019, 346, 180-196.	6.6	34
17	The plastic flow machining: A new SPD process for producing metal sheets with gradient structures. Materials Characterization, 2018, 138, 208-214.	4.4	24
18	Improving Mechanical Properties of cp Titanium by Heat Treatment Optimization. Advanced Engineering Materials, 2018, 20, 1700237.	3.5	8

#	Article	IF	CITATIONS
19	Role of Grain Boundary Sliding in Texture Evolution for Nanoplasticity. Advanced Engineering Materials, 2018, 20, 1700212.	3.5	14
20	Combined Effects of Texture and Grain Size Distribution on the Tensile Behavior of \hat{l}_{\pm} -Titanium. Materials, 2018, 11, 1088.	2.9	13
21	Application of chord length distributions and principal component analysis for quantification and representation of diverse polycrystalline microstructures. Materials Characterization, 2018, 145, 671-685.	4.4	40
22	Crystal Plasticity Modeling of Anisotropic Hardening and Texture Due to Dislocation Transmutation in Twinning. Materials, 2018, 11, 1855.	2.9	7
23	The New Plastic Flow Machining Process for Producing Thin Sheets. Advances in Materials Science and Engineering, 2018, 2018, 1-8.	1.8	10
24	Effect of Strain Heterogeneities on Microstructure, Texture, Hardness, and H-Activation of High-Pressure Torsion Mg Consolidated from Different Powders. Materials, 2018, 11, 1335.	2.9	17
25	Effects of Processing Conditions on Texture and Microstructure Evolution in Extra-Low Carbon Steel during Multi-Pass Asymmetric Rolling. Materials, 2018, 11, 1327.	2.9	10
26	Mechanical Modelling of the Plastic Flow Machining Process. Materials, 2018, 11, 1218.	2.9	14
27	Revealing Grain Boundary Sliding from Textures of a Deformed Nanocrystalline Pd–Au Alloy. Materials, 2018, 11, 190.	2.9	9
28	Modeling the Effect of Primary and Secondary Twinning on Texture Evolution during Severe Plastic Deformation of a Twinning-Induced Plasticity Steel. Materials, 2018, 11, 863.	2.9	9
29	Analysis of heterogeneities in strain and microstructure in aluminum alloy and magnesium processed by high-pressure torsion. Materials Characterization, 2017, 123, 159-165.	4.4	22
30	Twist Extrusion as a Potent Tool for Obtaining Advanced Engineering Materials: A Review. Advanced Engineering Materials, 2017, 19, 1600873.	3.5	64
31	Effect of initial powder type on the hydrogen storage properties of high-pressure torsion consolidated Mg. International Journal of Hydrogen Energy, 2017, 42, 22438-22448.	7.1	33
32	Onâ€axis versus offâ€axis Transmission Kikuchi Diffraction technique: application to the characterisation of severe plastic deformationâ€induced ultrafineâ€grained microstructures. Journal of Microscopy, 2017, 267, 70-80.	1.8	23
33	Gradient Structures in Thinâ€Walled Metallic Tubes Produced by Continuous High Pressure Tube Shearing Process. Advanced Engineering Materials, 2017, 19, 1700345.	3.5	12
34	Dislocation mediated variant selection for secondary twinning in compression of pure titanium. Acta Materialia, 2017, 124, 59-70.	7.9	75
35	Modeling strain and density distributions during high-pressure torsion of pre-compacted powder materials. Materials Research Letters, 2017, 5, 179-186.	8.7	18
36	The self-similarity theory of high pressure torsion. Beilstein Journal of Nanotechnology, 2016, 7, 1267-1277.	2.8	30

#	Article	IF	CITATIONS
37	Tensile Yield Strength of a Material Preprocessed by Simple Shear. Journal of Engineering Materials and Technology, Transactions of the ASME, 2016, 138, .	1.4	9
38	Shear-Coupled Grain Growth and Texture Development in a Nanocrystalline Ni-Fe Alloy during Cold Rolling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 6632-6644.	2.2	16
39	Geometrically necessary dislocations favor the Taylor uniform deformation mode in ultra-fine-grained polycrystals. Acta Materialia, 2016, 117, 35-42.	7.9	74
40	Deformation Field Analysis in Equal Channel Angular Extrusion of Metals Using Asymmetric Flow Function. Advanced Engineering Materials, 2015, 17, 1760-1772.	3 . 5	4
41	Gradient Structure in High Pressure Torsion Compacted Iron Powder. Advanced Engineering Materials, 2015, 17, 1748-1753.	3.5	16
42	Some Physical Characteristics of Strain Hardening in Severe Plastic Deformation. Advanced Engineering Materials, 2015, 17, 1783-1791.	3 . 5	12
43	A microstructure based analytical model for tensile twinning in a rod textured Mg alloy. International Journal of Plasticity, 2015, 72, 151-167.	8.8	19
44	Microstructure, texture and mechanical properties of cyclic expansion–extrusion deformed pure copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 423-432.	5 . 6	54
45	Grain size dependent texture evolution in severely rolled pure copper. Materials Characterization, 2015, 101, 180-188.	4.4	36
46	Microstructure and strain in protrusions formed during severe plastic deformation of aluminum. Materials Letters, 2015, 159, 253-256.	2.6	12
47	Thermal Response on the Microstructure and Texture of ECAP and Cold-Rolled Pure Magnesium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2598-2613.	2.2	29
48	Nano-enabled orientation alignment via extreme shear strains. Scripta Materialia, 2015, 98, 52-55.	5.2	5
49	Microstructure and mechanical properties of Al-3Fe alloy processed by equal channel angular extrusion. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012079.	0.6	5
50	Microstructure and mechanical properties of continuous equal channel angular pressed Titanium. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012067.	0.6	1
51	Asymmetric Rolling of Interstitial-Free Steel Using Differential Roll Diameters. Part II: Microstructure and Annealing Effects. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 447-454.	2.2	15
52	A new method to determine plastic deformation at the grain scale. Materials Characterization, 2014, 92, 106-117.	4.4	8
53	Ultrafine-grain metals by severe plastic deformation. Materials Characterization, 2014, 92, 1-14.	4.4	206
54	The equivalent strain in high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 530-535.	5 . 6	31

#	Article	IF	Citations
55	Extension of the Derby relation to metals severely deformed to their steady-state ultrafine-grain size. Scripta Materialia, 2014, 72-73, 59-62.	5.2	36
56	Unexpected brass-type texture in rolling of ultrafine-grained copper. Scripta Materialia, 2014, 92, 51-54.	5.2	43
57	Development of new routes of severe plastic deformation through cyclic expansion–extrusion process. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2014, 613, 357-364.	5.6	34
58	Effects of varying twist and twist rate sensitivities on the interpretation of torsion testing data. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 591, 9-17.	5. 6	16
59	Twinning effects in a polycrystalline magnesium alloy under cyclic deformation. Acta Materialia, 2014, 62, 212-224.	7.9	46
60	Texture induced grain coarsening in severe plastic deformed low carbon steel. Scripta Materialia, 2014, 86, 36-39.	5. 2	10
61	Contribution of shear deformation to grain refinement and densification of iron powder consolidated by high pressure torsion. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012032.	0.6	8
62	Asymmetric Rolling of Interstitial-Free Steel Using Differential Roll Diameters. Part I: Mechanical Properties and Deformation Textures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4346-4359.	2.2	30
63	Dry friction of steel under high pressure in quasi-static conditions. Tribology International, 2013, 67, 27-35.	5.9	13
64	Notes on representing grain size distributions obtained by electron backscatter diffraction. Materials Characterization, 2013, 84, 67-71.	4.4	35
65	Modeling of disorientation axis distribution in severely deformed copper. Scripta Materialia, 2013, 69, 183-186.	5. 2	12
66	New experimental insight into the mechanisms of nanoplasticity. Acta Materialia, 2013, 61, 7271-7284.	7.9	72
67	Evolution of texture and microstructure during hot torsion of a magnesium alloy. Acta Materialia, 2013, 61, 5263-5277.	7.9	107
68	Room temperature equal-channel angular pressing of a magnesium alloy. Acta Materialia, 2013, 61, 3027-3036.	7.9	52
69	Equal channel angular pressing processing routes and associated structure modification: a differential scanning calorimetry and X-ray line profile analysis. Powder Diffraction, 2012, 27, 194-199.	0.2	5
70	Ideal elasto-plastic behavior in torsional deformation of Zr44Ti11Cu10Ni10Be25 bulk metallic glass. Journal of Alloys and Compounds, 2012, 542, 85-89.	5 . 5	13
71	Microstructure, texture and mechanical properties of aluminum processed by high-pressure tube twisting. Acta Materialia, 2012, 60, 4393-4408.	7.9	89
72	Polycrystal modeling of tensile twinning in a Mg alloy during cyclic loading. Scripta Materialia, 2012, 67, 673-676.	5. 2	14

#	Article	IF	Citations
73	Influence of severe plastic deformation on the precipitation hardening of a FeSiTi steel. Journal of Materials Science, 2012, 47, 7939-7945.	3.7	16
74	Modeling of large strain hardening during grain refinement. Scripta Materialia, 2012, 66, 250-253.	5.2	23
75	Stress and strain gradients in high-pressure tube twisting. Scripta Materialia, 2012, 66, 773-776.	5.2	24
76	Texture development and grain refinement in non-equal-channel angular-pressed Al. Scripta Materialia, 2012, 67, 33-36.	5.2	17
77	Analysis of texture and R value variations in asymmetric rolling of IF steel. Journal of Materials Processing Technology, 2012, 212, 509-515.	6.3	46
78	Asymmetric Rolling of Interstitial-Free Steel Using One Idle Roll. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1328-1340.	2.2	32
79	Effect of strain path on grain refinement in severely plastically deformed copper. Scripta Materialia, 2011, 64, 284-287.	5.2	26
80	Effect of strain reversal on texture and grain refinement in route C equal channel angular pressed copper. Scripta Materialia, 2011, 65, 167-170.	5.2	19
81	The origin of strain reversal texture in equal channel angular pressing. Acta Materialia, 2011, 59, 5749-5757.	7.9	18
82	On Homogeneous Nucleation of Dislocation Loops in Nanocrystalline Materials. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3883-3888.	2.2	2
83	Texture evolution in commercially pure titanium after warm equal channel angular extrusion. Acta Materialia, 2011, 59, 1121-1133.	7.9	104
84	Texture evolution and grain refinement of ultrafine-grained copper during micro-extrusion. Philosophical Magazine, 2011, 91, 263-280.	1.6	10
85	Local texture and microstructure in cube-oriented nickel single crystal deformed by equal channel angular extrusion. Philosophical Magazine, 2011, 91, 281-299.	1.6	13
86	Severe plastic deformation processes for thin samples. Journal of Materials Science, 2010, 45, 4554-4560.	3.7	34
87	Texture evolution during micro-drawing of ultrafine grained copper. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4633-4640.	5.6	8
88	A model of grain fragmentation based on lattice curvature. Acta Materialia, 2010, 58, 1782-1794.	7.9	201
89	Effect of grain refinement by severe plastic deformation on the next-neighbor misorientation distribution. Acta Materialia, 2010, 58, 6706-6716.	7.9	66
90	Structure and Mechanical Properties of Asymmetrically Rolled IF Steel Sheet. Materials Science Forum, 2010, 654-656, 1255-1258.	0.3	9

#	Article	IF	Citations
91	Grain Fragmentation in Equal Channel Angular Pressed Copper. Materials Science Forum, 2010, 654-656, 1570-1573.	0.3	3
92	Principles of Nonequal Channel Angular Pressing. Journal of Engineering Materials and Technology, Transactions of the ASME, 2010, 132, .	1.4	24
93	Texture and Mechanical Behavior of Magnesium During Free-End Torsion. Journal of Engineering Materials and Technology, Transactions of the ASME, 2009, 131, .	1.4	41
94	A comparison of continuous SPD processes for improving the mechanical properties of aluminum alloy 6111. Journal of Materials Research, 2009, 24, 459-469.	2.6	24
95	Severe plastic deformation of metals by high-pressure tube twisting. Scripta Materialia, 2009, 60, 175-177.	5.2	159
96	A fan-type flow-line model in equal channel angular extrusion. Scripta Materialia, 2009, 61, 24-27.	5.2	15
97	Non-equal channel angular pressing of aluminum alloy. Scripta Materialia, 2009, 61, 1121-1124.	5. 2	39
98	Analysis of microstructure and texture evolution in pure magnesium during symmetric and asymmetric rolling. Acta Materialia, 2009, 57, 5061-5077.	7.9	123
99	Spatial correlation in grain misorientation distribution. Acta Materialia, 2009, 57, 5382-5395.	7.9	37
100	Evolution of texture during equal channel angular extrusion of commercially pure aluminum: Experiments and simulations. Materials Science & Experiments and Structural Materials: Properties, Microstructure and Processing, 2009, 520, 134-146.	5. 6	44
101	Effective strain rate sensitivity of two phase materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 524, 186-192.	5.6	13
102	Texture evolution in equal-channel angular extrusion. Progress in Materials Science, 2009, 54, 427-510.	32.8	433
103	Strain localisation patterns under equal-channel angular pressing. Journal of the Mechanics and Physics of Solids, 2009, 57, 122-136.	4.8	55
104	Contribution of non-octahedral slip to texture evolution of fcc polycrystals in simple shear. Acta Materialia, 2009, 57, 2440-2453.	7.9	50
105	Simulation of Persistence Characteristics of Textures During Plastic Deformation. , 2009, , 225-246.		2
106	A New Flow Function to Model Texture Evolution in Symmetric and Asymmetric Rolling. , 2009, , 415-420.		3
107	Analysis of texture evolution in magnesium during equal channel angular extrusion. Acta Materialia, 2008, 56, 200-214.	7.9	157
108	Texture after ECAP of a cube-oriented Ni single crystal. Acta Materialia, 2008, 56, 3439-3449.	7.9	42

#	Article	IF	CITATIONS
109	Deformation field variations in equal channel angular extrusion due to back pressure. Scripta Materialia, 2008, 58, 771-774.	5.2	43
110	Comments on the paper "Influences of crystallographic orientations on deformation mechanism and grain refinement of Al single crystals subjected to one-pass equal-channel angular pressingâ€. Scripta Materialia, 2008, 59, 381-384.	5. 2	6
111	On microstructure and texture heterogeneities in single crystals deformed by equal channel angular extrusion. Scripta Materialia, 2008, 59, 1087-1090.	5.2	22
112	Influence of Dynamic Recrystallisation on Texture Formation in ECAP deformed Nickel. Materials Science Forum, 2007, 558-559, 575-580.	0.3	12
113	Role of twinning on texture evolution of silver during equal channel angular extrusion. Philosophical Magazine, 2007, 87, 885-906.	1.6	73
114	Recrystallization of high-purity aluminium during equal channel angular pressing. Acta Materialia, 2007, 55, 2211-2218.	7.9	90
115	Microstructure and texture gradient in copper deformed by equal channel angular pressing. Acta Materialia, 2007, 55, 2013-2024.	7.9	100
116	Ideal orientations and persistence characteristics of hexagonal close packed crystals in simple shear. Acta Materialia, 2007, 55, 2695-2705.	7.9	156
117	Role of strain-rate sensitivity in the crystal plasticity of hexagonal structures. International Journal of Plasticity, 2007, 23, 227-243.	8.8	24
118	Modelling of the Evolution of Dislocation Cell Misorientation under Severe Plastic Deformation. Materials Science Forum, 2006, 503-504, 675-680.	0.3	34
119	A new design for equal channel angular extrusion. Journal of Materials Processing Technology, 2006, 173, 29-33.	6.3	65
120	Evolution of crystallographic texture during equal channel angular extrusion of copper: The role of material variables. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 739-753.	2.2	55
121	Modeling of deformation and texture development of copper in a 120° ECAE die. Scripta Materialia, 2006, 54, 1667-1672.	5.2	24
122	Texture Formation during ECAP of Aluminum Alloy AA 5109. Materials Science Forum, 2006, 503-504, 99-106.	0.3	23
123	Heterogeneity of Deformation in Pure Ni Single Crystal of Cube Orientation Deformed by Equal Channel Angular Extrusion. Materials Science Forum, 2005, 495-497, 833-838.	0.3	8
124	Oblique Cube Texture Formation in High Purity Aluminum during Equal Channel Angular Pressing. Solid State Phenomena, 2005, 105, 351-356.	0.3	11
125	Texture Evolution in Commercially Pure Al during Equal Channel Angular Extrusion (ECAE) as a Function of Processing Routes. Solid State Phenomena, 2005, 105, 357-362.	0.3	18
126	Texture Gradient in ECAP Silver Measured by Synchrotron Radiation. Materials Science Forum, 2005, 495-497, 821-826.	0.3	15

#	Article	IF	CITATIONS
127	Pure Ni Single Crystal of Cube Orientation Deformed by Equal Channel Angular Extrusion. Solid State Phenomena, 2005, 105, 333-338.	0.3	7
128	Modeling of Length Changes and Textures during Free End Torsion of Cylindrical Bars. Materials Science Forum, 2005, 495-497, 1609-1614.	0.3	4
129	Experiments and Modelling of ECAE Textures of f.c.c. Polycrystals. Materials Science Forum, 2005, 495-497, 839-844.	0.3	19
130	Texture Gradient in ECAP Copper Measured by Synchrotron Radiation. Solid State Phenomena, 2005, 105, 327-332.	0.3	15
131	Simulation of Texture Development of Plane Carbon Steel in Multipass Rolling Using Analytical Flow Function. Materials Science Forum, 2005, 495-497, 1603-1608.	0.3	5
132	Modeling of axial strain in free-end torsion of textured copper. International Journal of Materials Research, 2005, 96, 1038-1043.	0.8	6
133	Texture Evolution in FCC Metals during Equal Channel Angular Extrusion (ECAE) as a Function of Stacking Fault Energy. Solid State Phenomena, 2005, 105, 345-350.	0.3	14
134	Modelling of strain hardening and microstructural evolution in equal channel angular extrusion. Computational Materials Science, 2005, 32, 568-576.	3.0	42
135	A Recrystallisation Based Investigation for Efficiency of Processing Routes during Equal Channel Angular Extrusion. Materials Science Forum, 2004, 467-470, 1325-1332.	0.3	13
136	Validation of the tangent formulation for the solution of the non-linear Eshelby inclusion problem. International Journal of Plasticity, 2004, 20, 291-307.	8.8	36
137	Analysis of texture evolution in equal channel angular extrusion of copper using a new flow field. Acta Materialia, 2004, 52, 1885-1898.	7.9	179
138	Simulation of Texture Evolution in Equal Channel Angular Extrusion of Copper Using a New Flow Field. Solid Mechanics and Its Applications, 2004, , 191-198.	0.2	0
139	Evolution of crystallographic texture during equal channel angular extrusion of silver. Scripta Materialia, 2003, 49, 1203-1208.	5.2	69
140	Texture Evolution in Severe Plastic Deformation by Equal Channel Angular Extrusion. Advanced Engineering Materials, 2003, 5, 308-316.	3.5	67
141	Plastic instability and Lüders bands in the tensile test: the role of crystal orientation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 358, 17-25.	5. 6	5
142	Strain Hardening at Large Strains as Predicted by Dislocation Based Polycrystal Plasticity Model. Journal of Engineering Materials and Technology, Transactions of the ASME, 2002, 124, 71-77.	1.4	186
143	Cyclic plasticity phenomena as predicted by polycrystal plasticity. Mechanics of Materials, 2000, 32, 99-113.	3.2	36
144	Self-consistent polycrystal modelling of dynamic recrystallization during the shear deformation of a Ti IF steel. Acta Materialia, 1999, 47, 447-460.	7.9	22

#	Article	IF	CITATIONS
145	Large-strain hardening curves corrected for texture development. Modelling and Simulation in Materials Science and Engineering, 1999, 7, 875-891.	2.0	14
146	A dislocation-based model for all hardening stages in large strain deformation. Acta Materialia, 1998, 46, 5509-5522.	7.9	573
147	Texture and Hardness in Wire Drawn [001] Copper Single Crystals. Textures and Microstructures, 1998, 31, 1-19.	0.2	1
148	Biaxial low cycle fatigue under non-proportional loading of a magnesium-lithium alloy. Engineering Fracture Mechanics, 1996, 54, 513-522.	4.3	18
149	Forming limit predictions with the perturbation method using stress potential functions of polycrystal viscoplasticity. International Journal of Mechanical Sciences, 1996, 38, 805-824.	6.7	39
150	On the role of texture development in the forming limits of sheet metals. International Journal of Mechanical Sciences, 1996, 38, 1117-1126.	6.7	55
151	Elastic-plastic effects during cyclic loading as predicted by the Taylor-Lin model of polycrystal elasto-viscoplasticity. International Journal of Plasticity, 1996, 12, 343-360.	8.8	26
152	Modelling of Texture Development and Deformation Mechanisms in a Ti20V Alloy Using a Self Consistent Polycrystal Approach. Textures and Microstructures, 1995, 25, 45-61.	0.2	15
153	A Modified Self Consistent Viscoplastic Model Based on Finite Element Results. Materials Science Forum, 1994, 157-162, 1869-1874.	0.3	1
154	Modelling the Effects of Static and Dynamic Recrystallization on Texture Development. Materials Science Forum, 1994, 157-162, 1713-1730.	0.3	6
155	Prediction of Forming Limits of Titanium Sheets Using the Perturbation Analysis with Texture Development. Materials Science Forum, 1994, 157-162, 1875-1880.	0.3	2
156	Self consistent modelling of the creep behavior of mixtures of camphor and octachloropropane. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 1994, 175, 231-236.	5 . 6	11
157	Tuning a self consistent viscoplastic model by finite element results—II. Application to torsion textures. Acta Metallurgica Et Materialia, 1994, 42, 2459-2466.	1.8	51
158	Tuning a self consistent viscoplastic model by finite element results—I. Modeling. Acta Metallurgica Et Materialia, 1994, 42, 2453-2458.	1.8	125
159	A modified model for simulating latent hardening during the plastic deformation of rate-dependent FCC polycrystals. International Journal of Plasticity, 1993, 9, 961-978.	8.8	67
160	Modelling oriented nucleation and selective growth during dynamic recrystallization. Scripta Metallurgica Et Materialia, 1992, 27, 1575-1580.	1.0	62
161	Modelling the texture changes produced by dynamic recrystallization. Scripta Metallurgica Et Materialia, 1992, 27, 359-363.	1.0	42
162	On the stability of the ideal orientations of rolling textures for F.C.C. polycrystals. Acta Metallurgica Et Materialia, 1992, 40, 3179-3193.	1.8	80

#	Article	IF	CITATIONS
163	Discretization Techniques for Orientation Distribution Functions. Textures and Microstructures, 1992, 19, 229-244.	0.2	136
164	Modelling High Temperature Rolling Textures of FCC Metals. Textures and Microstructures, 1992, 19, 211-227.	0.2	11
165	Texture Development and Length Changes in Copper Bars Subjected to Free End Torsion. Textures and Microstructures, 1992, 19, 245-262.	0.2	76
166	Analytical solutions for the ideal orientations of f.c.c. rolling textures. Acta Metallurgica Et Materialia, 1991, 39, 2921-2930.	1.8	29
167	Shortening behaviour of drawn and twisted copper wires. Materials Science and Technology, 1991, 7, 458-463.	1.6	7
168	Analytical Representation of Polycrystal Yield Surfaces., 1991,, 183-186.		5
169	Large Strain Effects during Free-End Torsion of Copper Bars. , 1991, , 319-322.		0
170	Development of ferrite rolling textures in low- and extra low-carbon steels. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1990, 21, 2985-3000.	1.4	109
171	Large strain shear and torsion of rate-sensitive FCC polycrystals. International Journal of Plasticity, 1990, 6, 45-61.	8.8	61
172	Length changes during free end torsion: A rate sensitive analysis. International Journal of Plasticity, 1990, 6, 83-108.	8.8	44
173	Stress response and persistence characteristics of the ideal orientations of shear textures. Acta Metallurgica, 1989, 37, 2197-2210.	2.1	146
174	Analytic Prediction of Texture and Length Changes During Free-End Torsion. Textures and Microstructures, 1989, 10, 195-209.	0.2	24
175	Effect of rate sensitivity on the stability of torsion textures. Acta Metallurgica, 1988, 36, 3077-3091.	2.1	234
176	Calculation of shear deformation at large strains. Scripta Metallurgica, 1988, 22, 1893-1896.	1.2	3
177	Dislocation structure and work hardening in polycrystalline ofhc copper rods deformed by torsion and tension. Acta Metallurgica, 1986, 34, 1257-1267.	2.1	96
178	The plastic behaviour of ?100? and ?111? textured polycrystalline metals during simultaneous torsion and extension. Journal of Materials Science, 1985, 20, 3983-3987.	3.7	2
179	Connection between stress state and plastic strain increments determined by a computer method. Journal of Materials Science, 1985, 20, 2128-2132.	3.7	0
180	Work hardening and fracture properties of Alï£įZnï£įMg alloys. Crystal Research and Technology, 1985, 20, 419-424.	1.3	0

LÃiszLó TOTH

#	Article	IF	CITATIONS
181	Comments on the paper "The alastic unloading of torsion bars subjected to prior plastic deformation― Scripta Metallurgica, 1985, 19, 241-243.	1.2	0
182	The yield function of a ?100? textured polycrystalline CuCoSi alloy wire for simultaneous torsion and extension. Journal of Materials Science, 1984, 19, 683-688.	3.7	0
183	Effect of internal oxidation on the mechanical properties of a Cu-Co-Si alloy. Journal of Materials Science, 1982, 17, 2841-2844.	3.7	2
184	The plastic behaviour of polycrystalline Cu-1 at% Co alloy deformed by simultaneous torsion and extension at 78 K. Journal of Materials Science, 1982, 17, 43-53.	3.7	11
185	Texture Heterogeneity in ECAP Deformed Copper. Solid State Phenomena, 0, 160, 47-54.	0.3	11
186	Development of Asymmetric Rolling for the Better Control over Structure and Mechanical Properties in IF Steel. Materials Science Forum, 0, 706-709, 2788-2793.	0.3	7
187	Texture Gradient in ECAP Copper Measured by Synchrotron Radiation. Solid State Phenomena, 0, , 327-332.	0.3	1