Zhenxing Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1243921/publications.pdf

Version: 2024-02-01

20817 17592 15,293 147 60 121 citations h-index g-index papers 147 147 147 14944 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. Journal of the American Chemical Society, 2017, 139, 14143-14149.	13.7	1,215
2	Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nature Catalysis, 2018 , 1 , $935-945$.	34.4	1,075
3	Nitrogenâ€Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Advanced Materials, 2018, 30, 1706758.	21.0	788
4	Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nature Communications, 2018, 9, 415.	12.8	527
5	Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transitionâ€Metal Spinels. Advanced Materials, 2017, 29, 1606800.	21.0	525
6	A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes. Advanced Energy Materials, 2017, 7, 1601424.	19.5	486
7	Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nature Communications, 2019, 10, 2807.	12.8	456
8	Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nature Communications, 2019, 10, 1711.	12.8	446
9	Ultrahigh-Loading of Ir Single Atoms on NiO Matrix to Dramatically Enhance Oxygen Evolution Reaction. Journal of the American Chemical Society, 2020, 142, 7425-7433.	13.7	430
10	Unveiling Active Sites of CO ₂ Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts. ACS Catalysis, 2018, 8, 3116-3122.	11.2	405
11	Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nature Energy, 2020, 5, 684-692.	39.5	365
12	Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN ₄ Sites for Oxygen Reduction. Angewandte Chemie - International Edition, 2019, 58, 18971-18980.	13.8	362
13	Introducing Fe ²⁺ into Nickel–Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie - International Edition, 2018, 57, 9392-9396.	13.8	284
14	Towards identifying the active sites on RuO $<$ sub $>$ 2 $<$ /sub $>$ (110) in catalyzing oxygen evolution. Energy and Environmental Science, 2017, 10, 2626-2637.	30.8	278
15	Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and Highâ€Power PGMâ€Free Cathodes in Fuel Cells. Advanced Materials, 2020, 32, e2003577.	21.0	262
16	Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nature Energy, 2022, 7, 652-663.	39.5	258
17	3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity. Energy and Environmental Science, 2019, 12, 2830-2841.	30.8	219
18	Polyanthraquinoneâ€Based Organic Cathode for Highâ€Performance Rechargeable Magnesiumâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1600140.	19.5	210

#	Article	IF	CITATIONS
19	Significance of Engineering the Octahedral Units to Promote the Oxygen Evolution Reaction of Spinel Oxides. Advanced Materials, 2019, 31, e1902509.	21.0	201
20	In Situ X-ray Absorption Spectroscopy Studies of Nanoscale Electrocatalysts. Nano-Micro Letters, 2019, 11, 47.	27.0	181
21	Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nature Communications, 2021, 12, 237.	12.8	174
22	Tuning perovskite oxides by strain: Electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Materials Today, 2019, 31, 100-118.	14.2	169
23	S-Doped MoP Nanoporous Layer Toward High-Efficiency Hydrogen Evolution in pH-Universal Electrolyte. ACS Catalysis, 2019, 9, 651-659.	11.2	167
24	Electroreduction of CO ₂ Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center. ACS Central Science, 2017, 3, 847-852.	11.3	165
25	Single Iridium Atom Doped Ni ₂ P Catalyst for Optimal Oxygen Evolution. Journal of the American Chemical Society, 2021, 143, 13605-13615.	13.7	162
26	Atomically Dispersed Single Ni Site Catalysts for Nitrogen Reduction toward Electrochemical Ammonia Synthesis Using N ₂ and H ₂ O. Small Methods, 2020, 4, 1900821.	8.6	148
27	Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst. Nano Energy, 2017, 39, 245-252.	16.0	143
28	Ultrahigh Oxygen Evolution Reaction Activity Achieved Using Ir Single Atoms on Amorphous CoO <i></i> Nanosheets. ACS Catalysis, 2021, 11, 123-130.	11.2	138
29	Novel Preparation of Nâ€Doped SnO ₂ Nanoparticles via Laserâ€Assisted Pyrolysis: Demonstration of Exceptional Lithium Storage Properties. Advanced Materials, 2017, 29, 1603286.	21.0	132
30	Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells. Energy and Environmental Science, 2020, 13, 3544-3555.	30.8	129
31	Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts. Angewandte Chemie - International Edition, 2020, 59, 21698-21705.	13.8	128
32	Amorphization mechanism of SrlrO ₃ electrocatalyst: How oxygen redox initiates ionic diffusion and structural reorganization. Science Advances, 2021, 7, .	10.3	122
33	Mechanistic Insight in the Function of Phosphite Additives for Protection of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode in High Voltage Li-lon Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 11450-11458.	8.0	121
34	Engineering Atomically Dispersed FeN ₄ Active Sites for CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2021, 60, 1022-1032.	13.8	121
35	Promoting Atomically Dispersed MnN ₄ Sites <i>via</i> Sulfur Doping for Oxygen Reduction: Unveiling Intrinsic Activity and Degradation in Fuel Cells. ACS Nano, 2021, 15, 6886-6899.	14.6	119
36	Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors. Scientific Reports, 2016, 6, 19777.	3.3	115

3

#	Article	IF	CITATIONS
37	Porous Alumina Protective Coatings on Palladium Nanoparticles by Self-Poisoned Atomic Layer Deposition. Chemistry of Materials, 2012, 24, 2047-2055.	6.7	110
38	Is alpha-V2O5 a cathode material for Mg insertion batteries?. Journal of Power Sources, 2016, 323, 44-50.	7.8	108
39	A Multisite Strategy for Enhancing the Hydrogen Evolution Reaction on a Nanoâ€Pd Surface in Alkaline Media. Advanced Energy Materials, 2017, 7, 1701129.	19.5	108
40	Improving Pd–N–C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment. Nature Energy, 2021, 6, 1144-1153.	39.5	108
41	Stabilizing atomic Pt with trapped interstitial F in alloyed PtCo nanosheets for high-performance zinc-air batteries. Energy and Environmental Science, 2020, 13, 884-895.	30.8	99
42	Atomically dispersed single Ni site catalysts for high-efficiency CO ₂ electroreduction at industrial-level current densities. Energy and Environmental Science, 2022, 15, 2108-2119.	30.8	99
43	Valence Change Ability and Geometrical Occupation of Substitution Cations Determine the Pseudocapacitance of Spinel Ferrite XFe $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 4 $<$ /sub $>$ (X = Mn, Co, Ni, Fe). Chemistry of Materials, 2016, 28, 4129-4133.	6.7	98
44	High Voltage LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ /Graphite Cell Cycled at 4.6 V with a FEC/HFDECâ€Based Electrolyte. Advanced Energy Materials, 2017, 7, 1700109.	19.5	98
45	Single-Iron Site Catalysts with Self-Assembled Dual-size Architecture and Hierarchical Porosity for Proton-Exchange Membrane Fuel Cells. Applied Catalysis B: Environmental, 2020, 279, 119400.	20.2	94
46	Tuning proton-coupled electron transfer by crystal orientation for efficient water oxidization on double perovskite oxides. Nature Communications, 2020, 11, 4299.	12.8	93
47	Boosting alkaline hydrogen evolution: the dominating role of interior modification in surface electrocatalysis. Energy and Environmental Science, 2020, 13, 3110-3118.	30.8	87
48	Locking of iridium magnetic moments to the correlated rotation of oxygen octahedra in $Sr < sub > 2 < sub > IrO < sub > 4 < sub > revealed by x-ray resonant scattering. Journal of Physics Condensed Matter, 2013, 25, 422202.$	1.8	86
49	Understanding Fundamentals and Reaction Mechanisms of Electrode Materials for Naâ€lon Batteries. Small, 2018, 14, e1703338.	10.0	86
50	Introducing Fe ²⁺ into Nickel–Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie, 2018, 130, 9536-9540.	2.0	86
51	Partialâ€Singleâ€Atom, Partialâ€Nanoparticle Composites Enhance Water Dissociation for Hydrogen Evolution. Advanced Science, 2021, 8, 2001881.	11.2	85
52	Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions. Accounts of Chemical Research, 2016, 49, 966-973.	15.6	84
53	NASICON-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries. Nano Energy, 2019, 64, 103941.	16.0	83
54	Atomically Dispersed Dualâ€Metal Site Catalysts for Enhanced CO ₂ Reduction: Mechanistic Insight into Active Site Structures. Angewandte Chemie - International Edition, 2022, 61, .	13.8	83

#	Article	IF	CITATIONS
55	The role of molecular modelling and simulation in the discovery and deployment of metal-organic frameworks for gas storage and separation. Molecular Simulation, 2019, 45, 1082-1121.	2.0	74
56	Anomalous Interface and Surface Strontium Segregation in (La _{1–<i>y</i>} Sr _{<i>y</i>}) ₂ CoO _{4±δ} /La _{1–<i>x</i>Heterostructured Thin Films. Journal of Physical Chemistry Letters, 2014, 5, 1027-1034.}	∘ <b ⊴udo>Sr	<surb3><i>x</i></su
57	Dimensionality Controlled Octahedral Symmetry-Mismatch and Functionalities in Epitaxial LaCoO ₃ /SrTiO ₃ Heterostructures. Nano Letters, 2015, 15, 4677-4684.	9.1	71
58	Yolk–shell Fe ₂ O ₃ ⊙ C composites anchored on MWNTs with enhanced lithium and sodium storage. Nanoscale, 2015, 7, 9520-9525.	5.6	67
59	Incorporation of Co into MoS2/graphene nanocomposites: One effective way to enhance the cycling stability of Li/Na storage. Journal of Power Sources, 2018, 373, 103-109.	7.8	67
60	Nanoscale Structure and Morphology of Atomic Layer Deposition Platinum on SrTiO ₃ (001). Chemistry of Materials, 2009, 21, 516-521.	6.7	63
61	Redox Targeting-Based Vanadium Redox-Flow Battery. ACS Energy Letters, 2019, 4, 3028-3035.	17.4	63
62	Composite hollow nanostructures composed of carbon-coated Ti ³⁺ self-doped TiO ₂ -reduced graphene oxide as an efficient electrocatalyst for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 7072-7080.	10.3	61
63	The Velociprobe: An ultrafast hard X-ray nanoprobe for high-resolution ptychographic imaging. Review of Scientific Instruments, 2019, 90, 083701.	1.3	61
64	Phthalocyanine Precursors To Construct Atomically Dispersed Iron Electrocatalysts. ACS Catalysis, 2019, 9, 6252-6261.	11,2	61
65	Revealing the Dominant Chemistry for Oxygen Reduction Reaction on Small Oxide Nanoparticles. ACS Catalysis, 2018, 8, 673-677.	11.2	58
66	Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN ₄ Sites for Oxygen Reduction. Angewandte Chemie, 2019, 131, 19147-19156.	2.0	57
67	Phase-Controlled Electrochemical Activity of Epitaxial Mg-Spinel Thin Films. ACS Applied Materials & Samp; Interfaces, 2015, 7, 28438-28443.	8.0	56
68	Porous FeCo Glassy Alloy as Bifunctional Support for Highâ€Performance Znâ€Air Battery. Advanced Energy Materials, 2021, 11, 2002204.	19.5	55
69	Influence of Fe Substitution into LaCoO $<$ sub $>3sub> Electrocatalysts on Oxygen-Reduction Activity. ACS Applied Materials & Distribution and Science (Section 2019), 11, 5682-5686.$	8.0	54
70	In Situ Studies of the Temperature-Dependent Surface Structure and Chemistry of Single-Crystalline (001)-Oriented La _{0.8} Sr _{0.2} CoO _{3â^Î} Perovskite Thin Films. Journal of Physical Chemistry Letters, 2013, 4, 1512-1518.	4.6	52
71	Single-Atom Nanozymes Linked Immunosorbent Assay for Sensitive Detection of A <i>β</i> 1-40: A Biomarker of Alzheimer's Disease. Research, 2020, 2020, 4724505.	5.7	52
72	Advanced hybrid battery with a magnesium metal anode and a spinel LiMn ₂ O ₄ cathode. Chemical Communications, 2016, 52, 9961-9964.	4.1	50

#	Article	IF	Citations
73	Metal Organic Framework Derivative Improving Lithium Metal Anode Cycling. Advanced Functional Materials, 2020, 30, 1907579.	14.9	49
74	Surface oxygenation induced strong interaction between Pd catalyst and functional support for zinc–air batteries. Energy and Environmental Science, 2022, 15, 1573-1584.	30.8	49
75	Strain Influence on the Oxygen Electrocatalysis of the (100)-Oriented Epitaxial La ₂ NiO _{$4+\hat{l}$} Thin Films at Elevated Temperatures. Journal of Physical Chemistry C, 2013, 117, 18789-18795.	3.1	48
76	Revealing the atomic structure and strontium distribution in nanometer-thick La0.8Sr0.2CoO3â^'Î' grown on (001)-oriented SrTiO3. Energy and Environmental Science, 2014, 7, 1166.	30.8	45
77	Surface Orientation Dependent Water Dissociation on Rutile Ruthenium Dioxide. Journal of Physical Chemistry C, 2018, 122, 17802-17811.	3.1	44
78	Sr < sub > 3 < / sub > CrN < sub > 3 < / sub > : A New Electride with a Partially Filled < i > d < / i > - Shell Transition Metal. Journal of the American Chemical Society, 2019, 141, 10595-10598.	13.7	43
79	Importance of mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>X</mml:mi><mml:mi>Y</mml:mi> in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Sr</mml:mi><mml:mi></mml:mi></mml:msub></mml:mrow></mml:math></mml:mrow>	3.2	41
80	by magnetic critical scattering experiments. Physical Review 8, 2015, 92, Lattice site–dependent metal leaching in perovskites toward a honeycomb-like water oxidation catalyst. Science Advances, 2021, 7, eabk1788.	10.3	41
81	Engineering Atomically Dispersed FeN ₄ Active Sites for CO ₂ Electroreduction. Angewandte Chemie, 2021, 133, 1035-1045.	2.0	39
82	Doping-modulated strain control of bifunctional electrocatalysis for rechargeable zinc–air batteries. Energy and Environmental Science, 2021, 14, 5035-5043.	30.8	39
83	A high performance lithium–sulfur battery enabled by a fish-scale porous carbon/sulfur composite and symmetric fluorinated diethoxyethane electrolyte. Journal of Materials Chemistry A, 2017, 5, 6725-6733.	10.3	38
84	Pressure-induced Confined Metal from the Mott Insulator <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	:m n §3b> <td>nmkenn>mrow>.</td>	nm ke nn>mrow>.
85	Physical Review Letters, 2016, 116, 216402. Pitfalls in X-ray absorption spectroscopy analysis and interpretation: A practical guide for general users. Current Opinion in Electrochemistry, 2021, 30, 100803.	4.8	34
86	Significantly Improved Cyclability of Conversionâ€Type Transition Metal Oxyfluoride Cathodes by Homologous Passivation Layer Reconstruction. Advanced Energy Materials, 2020, 10, 1903333.	19.5	33
87	The Restructuring-Induced CoO _{<i>x</i>} Catalyst for Electrochemical Water Splitting. Jacs Au, 2021, 1, 2216-2223.	7.9	32
88	Understanding the Electronic Structure Evolution of Epitaxial LaNi _{1â€"<i>x</i>} Fe _{<i>x</i>} O ₃ Thin Films for Water Oxidation. Nano Letters, 2021, 21, 8324-8331.	9.1	31
89	Iron-Imprinted Single-Atomic Site Catalyst-Based Nanoprobe for Detection of Hydrogen Peroxide in Living Cells. Nano-Micro Letters, 2021, 13, 146.	27.0	30
90	PtFe nanoparticles supported on electroactive Au–PANI core@shell nanoparticles for high performance bifunctional electrocatalysis. Journal of Materials Chemistry A, 2017, 5, 13692-13699.	10.3	29

#	Article	IF	Citations
91	Binary Atomically Dispersed Metalâ€Site Catalysts with Coreâ^'Shell Nanostructures for O ₂ and CO ₂ Reduction Reactions. Small Science, 2021, 1, 2100046.	9.9	29
92	Role of surface steps in activation of surface oxygen sites on Ir nanocrystals for oxygen evolution reaction in acidic media. Applied Catalysis B: Environmental, 2022, 302, 120834.	20.2	29
93	Co stabilized metallic 1Td MoS2 monolayers: Bottom-up synthesis and enhanced capacitance with ultra-long cycling stability. Materials Today Energy, 2018, 7, 10-17.	4.7	28
94	Interfacial processes in electrochemical energy systems. Chemical Communications, 2021, 57, 10453-10468.	4.1	28
95	Al2O3 coated LiCoO2 as cathode for high-capacity and long-cycling Li-ion batteries. Chinese Chemical Letters, 2018, 29, 1768-1772.	9.0	27
96	In situ characterizations of solid–solid interfaces in solidâ€state batteries using synchrotron Xâ€ray techniques. , 2021, 3, 762-783.		27
97	In-situ investigation of pressure effect on structural evolution and conductivity of Na3SbS4 superionic conductor. Journal of Power Sources, 2018, 401, 111-116.	7.8	26
98	Holeâ€Trappingâ€Induced Stabilization of Ni ^{4 +} in SrNiO ₃ /LaFeO ₃ Superlattices. Advanced Materials, 2020, 32, e2005003.	21.0	26
99	Oxygen Reduction Electrocatalysis on Ordered Intermetallic Pd–Bi Electrodes Is Enhanced by a Low Coverage of Spectator Species. Journal of Physical Chemistry C, 2020, 124, 5220-5224.	3.1	25
100	Protecting Al foils for high-voltage lithium-ion chemistries. Materials Today Energy, 2018, 7, 18-26.	4.7	24
101	Direct Atomic-Scale Observation of Redox-Induced Cation Dynamics in an Oxide-Supported Monolayer Catalyst: WO $<$ sub $<$ ci>xxchemical Society, 2009, 131, 18200-18201.	13.7	22
102	Atomic-scale cation dynamics in a monolayer VO $<$ sub $>Xsub>(\hat{l}\pm-Fe<sub>2sub>O<sub>3sub>catalyst. RSC Advances, 2015, 5, 103834-103840.$	3.6	22
103	Atomic-Scale Study of Ambient-Pressure Redox-Induced Changes for an Oxide-Supported Submonolayer Catalyst: $VO\langle i>x\langle j>ub>/l^{\pm}-TiO2(110)$. Journal of Physical Chemistry Letters, 2012, 3, 2845-2850.	4.6	20
104	Catalysts Transform While Molecules React: An Atomic-Scale View. Journal of Physical Chemistry Letters, 2013, 4, 285-291.	4.6	19
105	Strain-Driven Mn-Reorganization in Overlithiated Li _{<i>x</i>} Mn ₂ O ₄ Epitaxial Thin-Film Electrodes. ACS Applied Energy Materials, 2018, 1, 2526-2535.	5.1	18
106	Tailoring magnetic order via atomically stacking $3 < i > d < i > 5 < i > d < i > c $ electrons to achieve high-performance spintronic devices. Applied Physics Reviews, 2020, 7, .	11.3	18
107	Development of a \hat{I}^3 -polyglutamic acid binder for cathodes with high mass fraction of sulfur. RSC Advances, 2016, 6, 102626-102633.	3.6	14
108	The role of titanium-oxo clusters in the sulfate process for TiO ₂ production. Dalton Transactions, 2019, 48, 11086-11093.	3.3	14

#	Article	IF	CITATIONS
109	Performance and Ongoing Development of the Velociprobe, a Fast Hard X-ray Nanoprobe for High-Resolution Ptychographic Imaging. Microscopy and Microanalysis, 2018, 24, 54-55.	0.4	13
110	Depth dependent elastic strain in ZnO epilayer: combined Rutherford backscattering/channeling and X-ray diffraction. Nuclear Instruments & Methods in Physics Research B, 2005, 229, 246-252.	1.4	12
111	Atomic Imaging of Oxide-Supported Metallic Nanocrystals. ACS Nano, 2011, 5, 9755-9760.	14.6	11
112	Hierarchical nanoparticle morphology for platinum supported on SrTiO3 (001): A combined microscopy and X-ray scattering study. Applied Surface Science, 2009, 256, 423-427.	6.1	10
113	Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts. Angewandte Chemie, 2020, 132, 21882-21889.	2.0	10
114	Temperature dependent diffusion and epitaxial behavior of oxidized Au/Ni/p-GaN ohmic contact. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 128, 37-43.	3.5	9
115	Investigation of Glutaric Anhydride as an Electrolyte Additive for Graphite/LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ Full Cells. Journal of the Electrochemical Society, 2017, 164, A173-A179.	2.9	9
116	Thermally induced nanoscale structural and morphological changes for atomic-layer-deposited Pt on SrTiO3(001). Journal of Applied Physics, 2011, 110, .	2.5	7
117	Redox-driven atomic-scale changes in mixed catalysts: VOX/WOX/α-TiO2 (110). RSC Advances, 2014, 4, 64608-64616.	3.6	7
118	Bioinspired Activation of <scp>N _{2 < /sub> < /scp> on Asymmetrical Coordinated Fe Grafted <scp>1T MoS _{2 < /sub> < /scp> at Room Temperature ^{â € < /sup>. Chinese Journal of Chemistry, 2021, 39, 1898-1904.}}</scp>}</scp>	4.9	7
119	Revealing the Fast and Durable Na ⁺ Insertion Reactions in a Layered Na ₃ Fe ₃ (PO ₄) ₄ Anode for Aqueous Na-Ion Batteries. ACS Materials Au, 2022, 2, 63-71.	6.0	7
120	Controlled Synthesis of Perforated Oxide Nanosheets with High Density Nanopores Showing Superior Water Purification Performance. ACS Applied Materials & Samp; Interfaces, 2022, 14, 18513-18524.	8.0	7
121	The local structure of 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 from neutron total scattering measurements and multi-edge X-ray absorption analysis. Materials Research Bulletin, 2021, 135, 111124.	5.2	6
122	Reversible electrochemical conversion from selenium to cuprous selenide. Chemical Communications, 2021, 57, 10703-10706.	4.1	6
123	Atomically Dispersed Dualâ€Metal Site Catalysts for Enhanced CO ₂ Reduction: Mechanistic Insight into Active Site Structures. Angewandte Chemie, 2022, 134, .	2.0	6
124	From Copper to Basic Copper Carbonate: A Reversible Conversion Cathode in Aqueous Anion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
125	An environmental benign approach to high performance anode for Li-ion battery: N-rich porous carbon from Cr(VI)-polluted water treatment. Materials Letters, 2018, 219, 100-103.	2.6	5
126	Reducing Side Reactions Using PF6-based Electrolytes in Multivalent Hybrid Cells. Materials Research Society Symposia Proceedings, 2015, 1773, 27-32.	0.1	4

#	Article	IF	CITATIONS
127	Phase control of Mn-based spinel films via pulsed laser deposition. Journal of Applied Physics, 2016, 120, .	2.5	4
128	The interface electrochemical and chemical mechanism of a low alloy steel in a 3.5% NaCl solution containing Ce ³⁺ â€based inhibitor. Surface and Interface Analysis, 2018, 50, 608-615.	1.8	4
129	Spontaneous Lithiation of Binary Oxides during Epitaxial Growth on LiCoO ₂ . Nano Letters, 2022, 22, 5530-5537.	9.1	4
130	From Copper to Basic Copper Carbonate: A Reversible Conversion Cathode in Aqueous Anion Batteries. Angewandte Chemie, 0, , .	2.0	3
131	In-Situ Synchrotron X-Ray Characterizations of Battery Materials. , 2021, , .		2
132	Dual-shell silicate and alumina coating for long lasting and high capacity lithium ion batteries. Journal of Energy Chemistry, 2022, 68, 314-323.	12.9	1
133	On the unusual amber coloration of nanoporous sol-gel processed Al-doped silica glass: An experimental study. Scientific Reports, 2019, 9, 12474.	3.3	0
134	(Invited) Amorphization Mechanism of SrIrO3: How Oxygen Redox Initiates Ionic Diffusion and Structural Reorganization. ECS Meeting Abstracts, 2021, MA2021-01, 1175-1175.	0.0	0
135	Insights from Near-Surface Atomic Structures and Composition for Catalytic Activity and Stability of Oxides in Electrochemical Reactions. ECS Meeting Abstracts, 2016, , .	0.0	0
136	Thin Film Cathodes for Lithium and Beyond Lithium-lon Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
137	In Situ Studies of Oxide-Electrolyte Interface Reactivity in Lithium-lon Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
138	Elucidating the Pre-Oxygen Evolution Surface Chemistry on Ruthenium Dioxide Surfaces. ECS Meeting Abstracts, 2017, , .	0.0	0
139	(Invited) Facets of Nanocrystal: A Knob to Tune Electrocatalytic Activity. ECS Meeting Abstracts, 2018, ,	0.0	0
140	Towards Identifying the Active Sites on Oriented Ruthenium Dioxide Surfaces in Catalyzing Oxygen Evolution. ECS Meeting Abstracts, 2018, , .	0.0	0
141	Unveiling Formation Mechanisms of Atomically Dispersed FeN4 Active Sites. ECS Meeting Abstracts, 2019, , .	0.0	0
142	(Invited) In Situ x-Ray Absorption Spectroscopy Studies of Catalysts for Water Spitting. ECS Meeting Abstracts, 2019, , .	0.0	0
143	Surface Modifications on LiCoO2-Based Cathodes for High-Density Lithium-Ion Batteries with Long Cycle Life. ECS Meeting Abstracts, 2019, , .	0.0	0
144	Structure Evolution of Atomically Dispersed FeN4 Sites for Oxygen Reduction. ECS Meeting Abstracts, 2020, MA2020-01, 2669-2669.	0.0	0

ZHENXING FENG

#	Article	IF	CITATIONS
145	In Situ Study of Catalyst Reconstruction during Electrochemical CO2 Reduction. ECS Meeting Abstracts, 2018, MA2018-01, 1825-1825.	0.0	0
146	(Invited) Fast Charging Anodes for Aqueous Sodium-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 502-502.	0.0	0
147	In Situ X-Ray Absorption Spectroscopy Studies of Co ₉ S ₈ Catalyst in Oxygen Evolution Reaction. ECS Meeting Abstracts, 2020, MA2020-02, 3164-3164.	0.0	0