## J Peter W Young

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/124238/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ploughing up the wood-wide web?. Nature, 1998, 394, 431-431.                                                                                                                                                                                         | 27.8 | 860       |
| 2  | The role of ecological theory in microbial ecology. Nature Reviews Microbiology, 2007, 5, 384-392.                                                                                                                                                   | 28.6 | 796       |
| 3  | Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis.<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20117-20122.                                             | 7.1  | 717       |
| 4  | Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS<br>Microbiology Ecology, 2008, 65, 339-349.                                                                                                          | 2.7  | 664       |
| 5  | Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiology<br>Ecology, 2001, 36, 203-209.                                                                                                                        | 2.7  | 516       |
| 6  | The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome<br>Biology, 2006, 7, R34.                                                                                                                               | 9.6  | 489       |
| 7  | Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. Journal of Ecology, 2002, 90, 371-384.                                                                          | 4.0  | 402       |
| 8  | Coâ€existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology,<br>2003, 12, 3085-3095.                                                                                                                           | 3.9  | 402       |
| 9  | Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Molecular Ecology, 2002, 11, 1555-1564.                                                                                                     | 3.9  | 390       |
| 10 | Extensive Fungal Diversity in Plant Roots. Science, 2002, 295, 2051-2051.                                                                                                                                                                            | 12.6 | 381       |
| 11 | Legume-Nodulating Betaproteobacteria: Diversity, Host Range, and Future Prospects. Molecular<br>Plant-Microbe Interactions, 2011, 24, 1276-1288.                                                                                                     | 2.6  | 378       |
| 12 | Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytologist,<br>1995, 130, 259-265.                                                                                                                            | 7.3  | 362       |
| 13 | Introducing the bacterial â€~chromid': not a chromosome, not a plasmid. Trends in Microbiology, 2010,<br>18, 141-148.                                                                                                                                | 7.7  | 337       |
| 14 | Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Molecular Ecology, 2002, 11, 2669-2678.                                                                               | 3.9  | 329       |
| 15 | Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist, 2004, 161, 503-515.                                                                                             | 7.3  | 324       |
| 16 | The transcriptome of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> (DAOM 197198)<br>reveals functional tradeoffs in an obligate symbiont. New Phytologist, 2012, 193, 755-769.                                                        | 7.3  | 305       |
| 17 | Diversity and phylogeny of rhizobia. New Phytologist, 1996, 133, 87-94.                                                                                                                                                                              | 7.3  | 276       |
| 18 | Three Phylogenetic Groups of <i>nodA</i> and <i>nifH</i> Genes in <i>Sinorhizobium</i> and<br><i>Mesorhizobium</i> Isolates from Leguminous Trees Growing in Africa and Latin America. Applied<br>and Environmental Microbiology, 1998, 64, 419-426. | 3.1  | 265       |

| #  | Article                                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Nonlegumes, Legumes, and Root Nodules Harbor Different Arbuscular Mycorrhizal Fungal<br>Communities. Applied and Environmental Microbiology, 2004, 70, 6240-6246.                                                                                                                                                  | 3.1 | 250       |
| 20 | <i>Burkholderia</i> species are ancient symbionts of legumes. Molecular Ecology, 2010, 19, 44-52.                                                                                                                                                                                                                  | 3.9 | 245       |
| 21 | Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts. Trends in Microbiology, 2016, 24, 63-75.                                                                                                                                                                                                    | 7.7 | 245       |
| 22 | Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA.<br>Proceedings of the National Academy of Sciences of the United States of America, 2007, 104,<br>16970-16975.                                                                                                 | 7.1 | 207       |
| 23 | Molecular diversity of arbuscular mycorrhizal fungi colonisingHyacinthoides non-scripta(bluebell)<br>in a seminatural woodland. Molecular Ecology, 1999, 8, 659-666.                                                                                                                                               | 3.9 | 198       |
| 24 | The Glutamine Synthetases of Rhizobia: Phylogenetics and Evolutionary Implications. Molecular Biology and Evolution, 2000, 17, 309-319.                                                                                                                                                                            | 8.9 | 191       |
| 25 | Differentiation of Pseudomonas solanacearum, Pseudomonas syzygii, pseudomonas pickettii and the<br>Blood Disease Bacterium by partial 16S rRNA sequencing: construction of oligonucleotide primers for<br>sensitive detection by polymerase chain reaction. Journal of General Microbiology, 1993, 139, 1587-1594. | 2.3 | 181       |
| 26 | Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes.<br>Molecular Ecology, 2004, 13, 2435-2444.                                                                                                                                                                      | 3.9 | 174       |
| 27 | Proof that Burkholderia Strains Form Effective Symbioses with Legumes: a Study of Novel Mimosa<br>-Nodulating Strains from South America. Applied and Environmental Microbiology, 2005, 71, 7461-7471.                                                                                                             | 3.1 | 172       |
| 28 | Nodulation and nitrogen fixation by <i>Mimosa</i> spp. in the Cerrado and Caatinga biomes of Brazil.<br>New Phytologist, 2010, 186, 934-946.                                                                                                                                                                       | 7.3 | 170       |
| 29 | Minimal standards for the description of new genera and species of rhizobia and agrobacteria.<br>International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 1852-1863.                                                                                                                           | 1.7 | 170       |
| 30 | Diversity of the ribosomal internal transcribed spacers within and among isolates of Glomus mosseae and related mycorrhizal fungi. New Phytologist, 1996, 133, 103-111.                                                                                                                                            | 7.3 | 168       |
| 31 | Bacterial genospecies that are not ecologically coherent: population genomics of <i>Rhizobium leguminosarum</i> . Open Biology, 2015, 5, 140133.                                                                                                                                                                   | 3.6 | 160       |
| 32 | <i>Burkholderia</i> spp. are the most competitive symbionts of <i>Mimosa</i> , particularly under<br>Nâ€limited conditions. Environmental Microbiology, 2009, 11, 762-778.                                                                                                                                         | 3.8 | 157       |
| 33 | Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Annals of Botany,<br>2007, 100, 1403-1411.                                                                                                                                                                                      | 2.9 | 154       |
| 34 | Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community.<br>Journal of Ecology, 2007, 95, 623-630.                                                                                                                                                                          | 4.0 | 141       |
| 35 | Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community. Global Change Biology, 2004, 10, 52-64.                                                                                                                       | 9.5 | 127       |
| 36 | Horizontal Transfer of Symbiosis Genes within and Between Rhizobial Genera: Occurrence and Importance. Genes, 2018, 9, 321.                                                                                                                                                                                        | 2.4 | 124       |

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The evolution of specificity in the legume-rhizobium symbiosis. Trends in Ecology and Evolution, 1989, 4, 341-349.                                                                                                                                              | 8.7 | 122       |
| 38 | Nodulation of <i>Sesbania</i> species by <i>Rhizobium</i> ( <i>Agrobacterium</i> ) strain IRBG74 and other rhizobia. Environmental Microbiology, 2009, 11, 2510-2525.                                                                                           | 3.8 | 120       |
| 39 | Temporal variation in the arbuscular mycorrhizal communities colonising seedlings in a tropical forest. FEMS Microbiology Ecology, 2002, 42, 131-136.                                                                                                           | 2.7 | 118       |
| 40 | Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field<br>revealed using molecular genetic tracing and measurement of yield components. New Phytologist,<br>2012, 194, 810-822.                                  | 7.3 | 109       |
| 41 | Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. International<br>Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2174-2179.                                                                                 | 1.7 | 107       |
| 42 | Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Molecular Ecology,<br>1998, 7, 889-895.                                                                                                                                        | 3.9 | 105       |
| 43 | Higher Diversity of Rhizobium leguminosarum Biovar viciae Populations in Arable Soils than in Grass<br>Soils. Applied and Environmental Microbiology, 2000, 66, 2445-2450.                                                                                      | 3.1 | 105       |
| 44 | An invasive Mimosa in India does not adopt the symbionts of its native relatives. Annals of Botany, 2013, 112, 179-196.                                                                                                                                         | 2.9 | 100       |
| 45 | Ribosomal small subunit sequence variation within spores of an arbuscular mycorrhizal fungus,<br>Scutellospora sp Molecular Ecology, 1999, 8, 915-921.                                                                                                          | 3.9 | 98        |
| 46 | <b>Substrate induction and glucose repression of maltose utilization by <i>Streptomyces<br/>coelicolor</i> A3(2) is controlled by <i>malR</i>, a member of the <i>lacl–galR</i> family of<br/>regulatory genes</b> . Molecular Microbiology, 1997, 23, 537-549. | 2.5 | 95        |
| 47 | Effects of long-term fertilization on AM fungal community structure and Glomalin-related soil protein in the Loess Plateau of China. Plant and Soil, 2011, 342, 233-247.                                                                                        | 3.7 | 95        |
| 48 | Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp International<br>Journal of Systematic and Evolutionary Microbiology, 2013, 63, 435-441.                                                                                          | 1.7 | 94        |
| 49 | Genetic and symbiotic characterization of rhizobia isolated from tree and herbaceous legumes grown in soils from ecologically diverse sites in Kenya. Soil Biology and Biochemistry, 2002, 34, 801-811.                                                         | 8.8 | 91        |
| 50 | Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from<br>Astragalus adsurgens growing in the northern regions of China. International Journal of Systematic<br>and Evolutionary Microbiology, 2004, 54, 2003-2012.         | 1.7 | 88        |
| 51 | Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots. Environmental<br>Microbiology, 2008, 10, 534-541.                                                                                                                            | 3.8 | 86        |
| 52 | The mitochondrial genome sequence of the arbuscular mycorrhizal fungus <i>Glomus<br/>intraradices</i> isolate 494 and implications for the phylogenetic placement of <i>Glomus</i> . New<br>Phytologist, 2009, 183, 200-211.                                    | 7.3 | 85        |
| 53 | Sib competition can favour sex in two ways. Journal of Theoretical Biology, 1981, 88, 755-756.                                                                                                                                                                  | 1.7 | 83        |
| 54 | Phylogeny of the Glomerales and Diversisporales (Fungi: Glomeromycota) from actin and elongation factor 1-alpha sequences. FEMS Microbiology Letters, 2003, 229, 127-132.                                                                                       | 1.8 | 78        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Real-time PCR and microscopy: Are the two methods measuring the same unit of arbuscular mycorrhizal fungal abundance?. Fungal Genetics and Biology, 2008, 45, 581-596.                                                  | 2.1 | 77        |
| 56 | <i>Rhizobium</i> Population Genetics: Enzyme Polymorphism in <i>Rhizobium leguminosarum</i> from Plants and Soil in a Pea Crop. Applied and Environmental Microbiology, 1987, 53, 397-402.                              | 3.1 | 77        |
| 57 | Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS<br>Microbiology Ecology, 2008, 66, 391-400.                                                                          | 2.7 | 76        |
| 58 | Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east<br>Brazil. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2272-2278.                     | 1.7 | 76        |
| 59 | Interactions betweenPseudomonas fluorescensbiocontrol agents andGlomus mosseae, an arbuscular mycorrhizal fungus, within the rhizosphere. FEMS Microbiology Letters, 1998, 166, 297-303.                                | 1.8 | 72        |
| 60 | Endemic <i><scp>M</scp>imosa</i> species from <scp>M</scp> exico prefer alphaproteobacterial rhizobial symbionts. New Phytologist, 2016, 209, 319-333.                                                                  | 7.3 | 72        |
| 61 | Complete Genome sequence of Burkholderia phymatum STM815T, a broad host range and efficient nitrogen-fixing symbiont of Mimosa species. Standards in Genomic Sciences, 2014, 9, 763-774.                                | 1.5 | 71        |
| 62 | Identification of roots from grass swards using PCR-RFLP and FFLP of the plastid trnL (UAA) intron.<br>BMC Ecology, 2003, 3, 8.                                                                                         | 3.0 | 70        |
| 63 | Bradyrhizobium guangdongense sp. nov. and Bradyrhizobium guangxiense sp. nov., isolated from<br>effective nodules of peanut. International Journal of Systematic and Evolutionary Microbiology, 2015,<br>65, 4655-4661. | 1.7 | 69        |
| 64 | A Common Genomic Framework for a Diverse Assembly of Plasmids in the Symbiotic Nitrogen Fixing<br>Bacteria. PLoS ONE, 2008, 3, e2567.                                                                                   | 2.5 | 69        |
| 65 | Invasive Robinia pseudoacacia in China is nodulated by Mesorhizobium and Sinorhizobium species that share similar nodulation genes with native American symbionts. FEMS Microbiology Ecology, 2009, 68, 320-328.        | 2.7 | 68        |
| 66 | Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum.<br>International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 2960-2967.                               | 1.7 | 68        |
| 67 | Azorhizobium doebereinerae sp. Nov. Microsymbiont of Sesbania virgata (Caz.) Pers Systematic and<br>Applied Microbiology, 2006, 29, 197-206.                                                                            | 2.8 | 67        |
| 68 | Modafinil in the treatment of idiopathic hypersomnia without long sleep time—a randomized,<br>doubleâ€blind, placeboâ€controlled study. Journal of Sleep Research, 2015, 24, 74-81.                                     | 3.2 | 67        |
| 69 | Population mixing of Rhizobium leguminosarum bv. viciae nodulating Vicia faba: the role of recombination and lateral gene transfer. FEMS Microbiology Ecology, 2010, 73, no-no.                                         | 2.7 | 65        |
| 70 | High diversity of chickpea Mesorhizobium species isolated in a Portuguese agricultural region. FEMS<br>Microbiology Ecology, 2004, 48, 101-107.                                                                         | 2.7 | 64        |
| 71 | Burkholderia sp. Induces Functional Nodules on the South African Invasive Legume Dipogon lignosus<br>(Phaseoleae) in New Zealand Soils. Microbial Ecology, 2014, 68, 542-555.                                           | 2.8 | 63        |
| 72 | Quantification of an arbuscular mycorrhizal fungus, Glomus mosseae, within plant roots by competitive polymerase chain reaction. Mycological Research, 1997, 101, 1440-1444.                                            | 2.5 | 62        |

J Peter W Young

| #  | Article                                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A Diverse Population of Introns in the Nuclear Ribosomal Genes of Ericoid Mycorrhizal Fungi<br>Includes Elements with Sequence Similarity to Endonuclease-Coding Genes. Molecular Biology and<br>Evolution, 2000, 17, 44-59.                                                                              | 8.9 | 60        |
| 74 | Effect of Rice Cultivation Systems on Indigenous Arbuscular Mycorrhizal Fungal Community<br>Structure. Microbes and Environments, 2013, 28, 316-324.                                                                                                                                                      | 1.6 | 58        |
| 75 | Increased sequencing depth does not increase captured diversity of arbuscular mycorrhizal fungi.<br>Mycorrhiza, 2017, 27, 761-773.                                                                                                                                                                        | 2.8 | 58        |
| 76 | The Common Nodulation Genes of Astragalus sinicus Rhizobia Are Conserved despite Chromosomal<br>Diversity. Applied and Environmental Microbiology, 2000, 66, 2988-2995.                                                                                                                                   | 3.1 | 57        |
| 77 | Multilocus sequence analysis reveals multiple symbiovars within Mesorhizobium species. Systematic and Applied Microbiology, 2012, 35, 359-367.                                                                                                                                                            | 2.8 | 56        |
| 78 | Average nucleotide identity of genome sequences supports the description of Rhizobium lentis sp.<br>nov., Rhizobium bangladeshense sp. nov. and Rhizobium binae sp. nov. from lentil (Lens culinaris)<br>nodules. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3037-3045. | 1.7 | 55        |
| 79 | Mesorhizobium alhagi sp. nov., isolated from wild Alhagi sparsifolia in north-western China.<br>International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 958-962.                                                                                                                     | 1.7 | 53        |
| 80 | Morphogenesis of the compound leaf in three genotypes of the pea, <i>Pisum sativum</i> . Canadian<br>Journal of Botany, 1986, 64, 1268-1276.                                                                                                                                                              | 1.1 | 51        |
| 81 | T-RFLP analysis of bacterial communities in the midguts of Apis mellifera and Apis cerana honey bees in<br>Thailand. FEMS Microbiology Ecology, 2012, 79, 273-281.                                                                                                                                        | 2.7 | 51        |
| 82 | Coordinated regulation of core and accessory genes in the multipartite genome of Sinorhizobium fredii. PLoS Genetics, 2018, 14, e1007428.                                                                                                                                                                 | 3.5 | 50        |
| 83 | A distinct class of peas (Pisum sativum L.) from Afghanistan that show strain specificity for symbiotic<br>Rhizobium. Heredity, 1982, 48, 203-210.                                                                                                                                                        | 2.6 | 49        |
| 84 | A search for peas (Pisum sativum L.) showing strain specificity for symbiotic Rhizobium<br>leguminosarum. Heredity, 1982, 48, 197-201.                                                                                                                                                                    | 2.6 | 48        |
| 85 | Defining the Rhizobium leguminosarum Species Complex. Genes, 2021, 12, 111.                                                                                                                                                                                                                               | 2.4 | 48        |
| 86 | Diversity of Sinorhizobium meliloti from the Central Asian Alfalfa Gene Center. Applied and<br>Environmental Microbiology, 2002, 68, 4694-4697.                                                                                                                                                           | 3.1 | 45        |
| 87 | Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies. Biotechnology for Biofuels, 2018, 11, 166.                                                                                                                                               | 6.2 | 44        |
| 88 | Distribution of repC plasmid-replication sequences among plasmids and isolates of Rhizobium<br>leguminosarum bv. viciae from field populations. Microbiology (United Kingdom), 1998, 144, 771-780.                                                                                                        | 1.8 | 43        |
| 89 | Slipins: ancient origin, duplication and diversification of the stomatin protein family. BMC<br>Evolutionary Biology, 2008, 8, 44.                                                                                                                                                                        | 3.2 | 43        |
| 90 | Direct amplification of nodD from community DNA reveals the genetic diversity of Rhizobium leguminosarum in soil. Environmental Microbiology, 2001, 3, 363-370.                                                                                                                                           | 3.8 | 42        |

J Peter W Young

| #   | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Symbiotic and Genetic Diversity of Rhizobium galegae Isolates Collected from the Galega orientalis<br>Gene Center in the Caucasus. Applied and Environmental Microbiology, 2003, 69, 1067-1074.                                              | 3.1  | 42        |
| 92  | Population genomics of <i>Sinorhizobium medicae</i> based on low-coverage sequencing of sympatric isolates. ISME Journal, 2011, 5, 1722-1734.                                                                                                | 9.8  | 41        |
| 93  | A genetic discontinuity in rootâ€nodulating bacteria of cultivated pea in the Indian transâ€Himalayas.<br>Molecular Ecology, 2012, 21, 145-159.                                                                                              | 3.9  | 41        |
| 94  | What does a bacterial genome sequence represent? Mis-assignment of MAFF 303099 to the genospecies<br>Mesorhizobium loti. Microbiology (United Kingdom), 2002, 148, 3330-3331.                                                                | 1.8  | 41        |
| 95  | Biochemical characterization of ?LAP,? a polymorphic aminopeptidase from the blue mussel, Mytilus edulis. Biochemical Genetics, 1979, 17, 305-323.                                                                                           | 1.7  | 40        |
| 96  | The ABC of symbiosis. Nature, 2001, 412, 597-598.                                                                                                                                                                                            | 27.8 | 40        |
| 97  | Mesorhizobium camelthorni sp. nov., isolated from Alhagi sparsifolia. International Journal of<br>Systematic and Evolutionary Microbiology, 2011, 61, 574-579.                                                                               | 1.7  | 39        |
| 98  | Ecology and Evolution of Rhizobia. , 2019, , .                                                                                                                                                                                               |      | 38        |
| 99  | The replicator region of theRhizobium leguminosarumcryptic plasmid pRL8JI. FEMS Microbiology<br>Letters, 1995, 133, 53-58.                                                                                                                   | 1.8  | 37        |
| 100 | dnaJ is a useful phylogenetic marker for alphaproteobacteria. International Journal of Systematic and<br>Evolutionary Microbiology, 2008, 58, 2839-2849.                                                                                     | 1.7  | 37        |
| 101 | Phylogeny of bethylid wasps (Hymenoptera: Bethylidae) inferred from 28S and 16S rRNA genes. Insect Systematics and Evolution, 2010, 41, 55-73.                                                                                               | 0.7  | 35        |
| 102 | Evolutionary Dynamics of Insertion Sequences in Relation to the Evolutionary Histories of the<br>Chromosome and Symbiotic Plasmid Genes of Rhizobium etli Populations. Applied and Environmental<br>Microbiology, 2010, 76, 6504-6513.       | 3.1  | 34        |
| 103 | Genetic and genomic glimpses of the elusive arbuscular mycorrhizal fungi. Current Opinion in Plant<br>Biology, 2012, 15, 454-461.                                                                                                            | 7.1  | 33        |
| 104 | A typing scheme for the honeybee pathogen <i><scp>M</scp>elissococcus plutonius</i> allows<br>detection of disease transmission events and a study of the distribution of variants. Environmental<br>Microbiology Reports, 2013, 5, 525-529. | 2.4  | 33        |
| 105 | Hostâ€specific competitiveness to form nodules in <i>Rhizobium leguminosarum</i> symbiovar<br><i>viciae</i> . New Phytologist, 2020, 226, 555-568.                                                                                           | 7.3  | 33        |
| 106 | Sexual swarms in Daphnia magna, a cyclic parthenogen. Freshwater Biology, 1978, 8, 279-281.                                                                                                                                                  | 2.4  | 31        |
| 107 | Sequence Diversity of the Plasmid Replication Gene repC in the Rhizobiaceae. Plasmid, 2000, 44, 209-219.                                                                                                                                     | 1.4  | 31        |
| 108 | DNA-based Identification of Goose Species from Two Archaeological Sites in Lincolnshire. Journal of<br>Archaeological Science, 2000, 27, 91-100.                                                                                             | 2.4  | 31        |

| #   | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Recurrent outbreaks of root mat in cucumber and tomato are associated with a monomorphic,<br>cucumopine, Ri-plasmid harboured by various Alphaproteobacteria. FEMS Microbiology Letters, 2006,<br>258, 136-143.                                                    | 1.8 | 31        |
| 110 | Symbiosis genes show a unique pattern of introgression and selection within a Rhizobium leguminosarum species complex. Microbial Genomics, 2020, 6, .                                                                                                              | 2.0 | 31        |
| 111 | Genome sequencing of two Neorhizobium galegae strains reveals a noeT gene responsible for the unusual acetylation of the nodulation factors. BMC Genomics, 2014, 15, 500.                                                                                          | 2.8 | 30        |
| 112 | Revealing the insoluble metasecretome of lignocellulose-degrading microbial communities. Scientific Reports, 2017, 7, 2356.                                                                                                                                        | 3.3 | 30        |
| 113 | Characterisation of rhizobia from African acacias and other tropical woody legumes using Biologâ,,¢<br>and partial 16S rRNA sequencing. FEMS Microbiology Letters, 1999, 170, 111-117.                                                                             | 1.8 | 29        |
| 114 | Bacteria Are Smartphones and Mobile Genes Are Apps. Trends in Microbiology, 2016, 24, 931-932.                                                                                                                                                                     | 7.7 | 28        |
| 115 | How many fungi does it take to change a plant community?. Trends in Plant Science, 1999, 4, 81-82.                                                                                                                                                                 | 8.8 | 27        |
| 116 | Genotypic characterisation of rhizobia nodulating Vicia faba from the soils of Jordan: a comparison with UK isolates. Soil Biology and Biochemistry, 2003, 35, 709-714.                                                                                            | 8.8 | 27        |
| 117 | Userâ€friendly bioinformatics pipeline gDAT (graphical downstream analysis tool) for analysing rDNA<br>sequences. Molecular Ecology Resources, 2021, 21, 1380-1392.                                                                                                | 4.8 | 27        |
| 118 | <i>Rhizobium leguminosarum</i> is the symbiont of lentils in the Middle East and Europe but not in<br>Bangladesh. FEMS Microbiology Ecology, 2014, 87, 64-77.                                                                                                      | 2.7 | 26        |
| 119 | Genome diversity in arbuscular mycorrhizal fungi. Current Opinion in Plant Biology, 2015, 26, 113-119.                                                                                                                                                             | 7.1 | 26        |
| 120 | International Committee on Systematics of Prokaryotes Subcommittee for the Taxonomy of Rhizobium<br>and Agrobacterium Minutes of the meeting, Budapest, 25 August 2016. International Journal of<br>Systematic and Evolutionary Microbiology, 2017, 67, 2485-2494. | 1.7 | 26        |
| 121 | Why are rhizobial symbiosis genes mobile?. Philosophical Transactions of the Royal Society B:<br>Biological Sciences, 2022, 377, 20200471.                                                                                                                         | 4.0 | 26        |
| 122 | Diversity and persistence of arbuscular mycorrhizas in a lowâ€Arctic meadow habitat. New Phytologist,<br>2007, 176, 691-698.                                                                                                                                       | 7.3 | 25        |
| 123 | A molecular guide to the taxonomy of arbuscular mycorrhizal fungi. New Phytologist, 2012, 193, 823-826.                                                                                                                                                            | 7.3 | 25        |
| 124 | Rhizobium etli is the dominant common bean nodulating rhizobia in cultivated soils from different<br>locations in Jordan. Applied Soil Ecology, 2004, 26, 193-200.                                                                                                 | 4.3 | 24        |
| 125 | Acquisition of an Agrobacterium Ri Plasmid and Pathogenicity by Other α- Proteobacteria in Cucumber and Tomato Crops Affected by Root Mat. Applied and Environmental Microbiology, 2004, 70, 2779-2785.                                                            | 3.1 | 23        |
| 126 | Rhizobia with 16S rRNA and nifH Similar to Mesorhizobium huakuii but Novel recA, glnII, nodA and nodC Genes Are Symbionts of New Zealand Carmichaelinae. PLoS ONE, 2012, 7, e47677.                                                                                | 2.5 | 23        |

| #   | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Rhizobium population genetics: Effect of clover variety and inoculum dilution on the genetic diversity sampled from natural populations. Plant and Soil, 1987, 103, 147-150.                                                                                            | 3.7 | 22        |
| 128 | Molecular diversity of Frankia in root nodules of Alnus incana grown with inoculum from polluted urban soils. FEMS Microbiology Ecology, 2004, 50, 255-263.                                                                                                             | 2.7 | 21        |
| 129 | Rhizobium population genetics: Host preference and strain competition effects on the range of<br>Rhizobium leguminosarum biovar Trifolii genotypes isolated from natural populations. Soil Biology<br>and Biochemistry, 1989, 21, 981-986.                              | 8.8 | 19        |
| 130 | Characterization of Arbuscular Mycorrhizal Fungus Communities of Aquilaria crassna and Tectona grandis Roots and Soils in Thailand Plantations. PLoS ONE, 2014, 9, e112591.                                                                                             | 2.5 | 17        |
| 131 | L-System Analysis of Compound Leaf Development in Pisum sativum L. Annals of Botany, 1992, 70, 189-196.                                                                                                                                                                 | 2.9 | 16        |
| 132 | The genetic diversity of intraterrestrial aliens. New Phytologist, 2008, 178, 465-468.                                                                                                                                                                                  | 7.3 | 16        |
| 133 | A new clade of Mesorhizobium nodulating Alhagi sparsifolia. Systematic and Applied Microbiology, 2009, 32, 8-16.                                                                                                                                                        | 2.8 | 16        |
| 134 | The determination of pea leaves, leaflets, and tendrils. American Journal of Botany, 1994, 81, 352-360.                                                                                                                                                                 | 1.7 | 15        |
| 135 | Arbuscular mycorrhizal communities associated with maples ( <i>Acer</i> spp.) in a common garden are influenced by season and host plant. Botany, 2014, 92, 321-326.                                                                                                    | 1.0 | 14        |
| 136 | Modification of Pea Leaf Morphology by 2,3,5-Triiodobenzoic Acid. Botanical Gazette, 1991, 152, 133-138.                                                                                                                                                                | 0.6 | 13        |
| 137 | Identification and analysis of rhizobial plasmid origins of transfer. FEMS Microbiology Ecology, 2002, 42, 227-234.                                                                                                                                                     | 2.7 | 11        |
| 138 | The NfeD Protein Family and Its Conserved Gene Neighbours Throughout Prokaryotes: Functional<br>Implications for Stomatin-Like Proteins. Journal of Molecular Evolution, 2009, 69, 657-667.                                                                             | 1.8 | 11        |
| 139 | Kissing cousins: mycorrhizal fungi get together. New Phytologist, 2009, 181, 751-753.                                                                                                                                                                                   | 7.3 | 11        |
| 140 | MAUIâ€seq: Metabarcoding using amplicons with unique molecular identifiers to improve error correction. Molecular Ecology Resources, 2021, 21, 703-720.                                                                                                                 | 4.8 | 11        |
| 141 | Fields with no recent legume cultivation have sufficient nitrogen-fixing rhizobia for crops of faba<br>bean (Vicia faba L.). Plant and Soil, 2022, 472, 345-368.                                                                                                        | 3.7 | 11        |
| 142 | Linkage of sym-2, the symbiotic specificity locus of Pisum sativum. Journal of Heredity, 1985, 76, 207-208.                                                                                                                                                             | 2.4 | 10        |
| 143 | International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of rhizobia<br>and agrobacteria Minutes of the closed meeting, Granada, 4 September 2017. International Journal of<br>Systematic and Evolutionary Microbiology, 2018, 68, 3363-3368. | 1.7 | 10        |
| 144 | Genetic variation is associated with differences in facilitative and competitive interactions in the Rhizobium leguminosarum species complex. Environmental Microbiology, 2021, , .                                                                                     | 3.8 | 9         |

1

| #   | Article                                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Does growth rate determine leaf form in Pisum sativum?. Canadian Journal of Botany, 1989, 67, 2590-2595.                                                                                                                                                                                                              | 1.1 | 8         |
| 146 | Induction of root-mat symptoms on cucumber plants by Rhizobium, but not by Ochrobactrum or<br>Sinorhizobium, harbouring a cucumopine Ri plasmid. Plant Pathology, 2005, 54, 799-805.                                                                                                                                  | 2.4 | 8         |
| 147 | Maximizing the Adjacent Possible in Automata Chemistries. Artificial Life, 2016, 22, 49-75.                                                                                                                                                                                                                           | 1.3 | 8         |
| 148 | International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia<br>and Agrobacteria Minutes of the meeting by video conference, 11 July 2018. International Journal of<br>Systematic and Evolutionary Microbiology, 2019, 69, 1835-1840.                                               | 1.7 | 7         |
| 149 | The Determination of Pea Leaves, Leaflets, and Tendrils. American Journal of Botany, 1994, 81, 352.                                                                                                                                                                                                                   | 1.7 | 7         |
| 150 | Introducing a Novel, Broad Host Range Temperate Phage Family Infecting Rhizobium leguminosarum and Beyond. Frontiers in Microbiology, 2021, 12, 765271.                                                                                                                                                               | 3.5 | 7         |
| 151 | The molecular palaeoecology of geese: identification of archaeological goose remains using ancient<br>DNA analysis. International Journal of Osteoarchaeology, 1998, 8, 280-287.                                                                                                                                      | 1.2 | 6         |
| 152 | International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia<br>and Agrobacteria Minutes of the closed meeting by videoconference, 6 July 2020. International Journal<br>of Systematic and Evolutionary Microbiology, 2021, 71, .                                                   | 1.7 | 6         |
| 153 | International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Rhizobia<br>and Agrobacteria Minutes of the closed meeting by videoconference, 17 July 2019. International Journal<br>of Systematic and Evolutionary Microbiology, 2020, 70, 3563-3571.                                         | 1.7 | 5         |
| 154 | Genetic Variation in Host-Specific Competitiveness of the Symbiont Rhizobium leguminosarum<br>Symbiovar viciae. Frontiers in Plant Science, 2021, 12, 719987.                                                                                                                                                         | 3.6 | 4         |
| 155 | PLAZZMID: An Evolutionary Agent-Based Architecture Inspired by Bacteria and Bees. , 2007, , 1151-1160.                                                                                                                                                                                                                |     | 4         |
| 156 | History of Rhizobial Taxonomy. , 2019, , 23-39.                                                                                                                                                                                                                                                                       |     | 3         |
| 157 | Interactions between Pseudomonas fluorescens biocontrol agents and Glomus mosseae, an arbuscular mycorrhizal fungus, within the rhizosphere. FEMS Microbiology Letters, 1998, 166, 297-303.                                                                                                                           | 1.8 | 3         |
| 158 | International Committee on Systematics of Prokaryotes, Subcommittee on the taxonomy of Rhizobia and Agrobacteria, minutes of the annual meeting by videoconference, 5 July 2021, followed by online discussion until 31 December 2021. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, . | 1.7 | 3         |
| 159 | Molecular Microprograms. Lecture Notes in Computer Science, 2011, , 297-304.                                                                                                                                                                                                                                          | 1.3 | 2         |
| 160 | Symbiosis Genes: Organisation and Diversity. , 2019, , 123-144.                                                                                                                                                                                                                                                       |     | 2         |
| 161 | Genomics and Evolution of Rhizobia. , 2019, , 103-119.                                                                                                                                                                                                                                                                |     | 2         |
|     |                                                                                                                                                                                                                                                                                                                       |     |           |

162 Gene regulation in a particle metabolome. , 2009, , .

| #   | Article                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------|-----|-----------|
| 163 | Genes: an Open Access Journal. Genes, 2010, 1, 1-3.                                     | 2.4 | 1         |
| 164 | Molecular biology of the <i>Rhizobiaceae</i> . New Phytologist, 2001, 149, 17-17.       | 7.3 | 0         |
| 165 | Evolution of Symbiosis Genes: Vertical and Horizontal Gene Transfer. , 2019, , 145-152. |     | 0         |