Xingyi Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1241449/publications.pdf

Version: 2024-02-01

23 7,401 19 21 papers citations h-index g-index

24 24 24 4846
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 2018, 13, 489-495.	31.5	1,356
2	Materials for solar-powered water evaporation. Nature Reviews Materials, 2020, 5, 388-401.	48.7	784
3	A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy and Environmental Science, 2018, 11, 1985-1992.	30.8	654
4	Architecting highly hydratable polymer networks to tune the water state for solar water purification. Science Advances, 2019, 5, eaaw5484.	10.3	600
5	A 3D Nanostructured Hydrogelâ€Frameworkâ€Derived Highâ€Performance Composite Polymer Lithiumâ€Ion Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 2096-2100.	13.8	484
6	Biomassâ€Derived Hybrid Hydrogel Evaporators for Costâ€Effective Solar Water Purification. Advanced Materials, 2020, 32, e1907061.	21.0	436
7	Hydrogels as an Emerging Material Platform for Solar Water Purification. Accounts of Chemical Research, 2019, 52, 3244-3253.	15.6	392
8	Synergistic Energy Nanoconfinement and Water Activation in Hydrogels for Efficient Solar Water Desalination. ACS Nano, 2019, 13, 7913-7919.	14.6	354
9	Super Moistureâ€Absorbent Gels for Allâ€Weather Atmospheric Water Harvesting. Advanced Materials, 2019, 31, e1806446.	21.0	281
10	Atmospheric Water Harvesting: A Review of Material and Structural Designs., 2020, 2, 671-684.		274
11	Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries. Accounts of Chemical Research, 2017, 50, 2642-2652.	15.6	261
12	Tailoring Nanoscale Surface Topography of Hydrogel for Efficient Solar Vapor Generation. Nano Letters, 2019, 19, 2530-2536.	9.1	251
13	Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy and Environmental Science, 2020, 13, 2087-2095.	30.8	236
14	Topologyâ€Controlled Hydration of Polymer Network in Hydrogels for Solarâ€Driven Wastewater Treatment. Advanced Materials, 2020, 32, e2007012.	21.0	225
15	Nanostructured Functional Hydrogels as an Emerging Platform for Advanced Energy Technologies. Advanced Materials, 2018, 30, e1801796.	21.0	177
16	Nanostructured Conductive Polymer Gels as a General Framework Material To Improve Electrochemical Performance of Cathode Materials in Li-Ion Batteries. Nano Letters, 2017, 17, 1906-1914.	9.1	131
17	Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy and Environmental Science, 2019, 12, 3319-3327.	30.8	122
18	Solar Water Evaporation Toward Water Purification and Beyond. , 2021, 3, 1112-1129.		107

XINGYI ZHOU

#	Article	IF	CITATIONS
19	Molecular Engineering of Hydrogels for Rapid Water Disinfection and Sustainable Solar Vapor Generation. Advanced Materials, 2021, 33, e2102994.	21.0	105
20	Super Moisture Absorbent Gels for Sustainable Agriculture via Atmospheric Water Irrigation. , 2020, 2, 1419-1422.		82
21	Super Waterâ€Extracting Gels for Solarâ€Powered Volatile Organic Compounds Management in the Hydrological Cycle. Advanced Materials, 2022, 34, e2110548.	21.0	50
22	A 3D Nanostructured Hydrogelâ€Frameworkâ€Derived Highâ€Performance Composite Polymer Lithiumâ€Ion Electrolyte. Angewandte Chemie, 2018, 130, 2118-2122.	2.0	34
23	Titelbild: A 3D Nanostructured Hydrogelâ€Frameworkâ€Derived Highâ€Performance Composite Polymer Lithiumâ€lon Electrolyte (Angew. Chem. 8/2018). Angewandte Chemie, 2018, 130, 2025-2025.	2.0	1