
Gyanendra Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1241323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of a Rhodanine Class of Compounds as Inhibitors ofPlasmodium falciparumEnoyl-Acyl Carrier Protein Reductase. Journal of Medicinal Chemistry, 2007, 50, 2665-2675.	6.4	95
2	Identification, Characterization, and Inhibition of Plasmodium falciparum β-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ). Journal of Biological Chemistry, 2003, 278, 45661-45671.	3.4	91
3	Heterocyclic-Fused Pyrimidines as Novel Tubulin Polymerization Inhibitors Targeting the Colchicine Binding Site: Structural Basis and Antitumor Efficacy. Journal of Medicinal Chemistry, 2018, 61, 1704-1718.	6.4	84
4	Novel diphenyl ethers: Design, docking studies, synthesis and inhibition of enoyl ACP reductase of Plasmodium falciparum and Escherichia coli. Bioorganic and Medicinal Chemistry, 2006, 14, 8086-8098.	3.0	64
5	A two-helix motif positions the lysophosphatidic acid acyltransferase active site for catalysis within the membrane bilayer. Nature Structural and Molecular Biology, 2017, 24, 666-671.	8.2	64
6	Structure-Guided Design, Synthesis, and Biological Evaluation of (2-(1 <i>H</i> -Indol-3-yl)-1 <i>H</i> -imidazol-4-yl)(3,4,5-trimethoxyphenyl) Methanone (ABI-231) Analogues Targeting the Colchicine Binding Site in Tubulin. Journal of Medicinal Chemistry, 2019, 62, 6734-6750.	6.4	59
7	The Structural and Functional Basis for Recurring Sulfa Drug Resistance Mutations in Staphylococcus aureus Dihydropteroate Synthase. Frontiers in Microbiology, 2018, 9, 1369.	3.5	58
8	Identification of the I38T PA Substitution as a Resistance Marker for Next-Generation Influenza Virus Endonuclease Inhibitors. MBio, 2018, 9, .	4.1	53
9	Stable Analogues of OSBâ€AMP: Potent Inhibitors of MenE, the <i>o</i> uccinylbenzoate oA Synthetase from Bacterial Menaquinone Biosynthesis. ChemBioChem, 2012, 13, 129-136.	2.6	51
10	Identification and characterization of influenza variants resistant to a viral endonuclease inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3669-3674.	7.1	51
11	N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes. Scientific Reports, 2016, 6, 31500.	3.3	49
12	Unfolding Studies on Soybean Agglutinin and Concanavalin A Tetramers: A Comparative Account. Biophysical Journal, 2005, 88, 1300-1310.	0.5	47
13	Green Tea Catechins Potentiate Triclosan Binding to Enoyl-ACP Reductase from Plasmodium falciparum (PfENR). Journal of Medicinal Chemistry, 2007, 50, 765-775.	6.4	47
14	Unique Determinants of Neuraminidase Inhibitor Resistance among N3, N7, and N9 Avian Influenza Viruses. Journal of Virology, 2015, 89, 10891-10900.	3.4	43
15	Functional characterization of β-ketoacyl-ACP reductase (FabG) from Plasmodium falciparum. Biochemical and Biophysical Research Communications, 2003, 303, 387-392.	2.1	42
16	Structural Modification of the 3,4,5-Trimethoxyphenyl Moiety in the Tubulin Inhibitor VERU-111 Leads to Improved Antiproliferative Activities. Journal of Medicinal Chemistry, 2018, 61, 7877-7891.	6.4	39
17	NMR and molecular modelling studies on the interaction of fluconazole with β-cyclodextrin. Chemistry Central Journal, 2009, 3, 9.	2.6	37
18	Structure–Activity Relationship Study of Novel 6-Aryl-2-benzoyl-pyridines as Tubulin Polymerization Inhibitors with Potent Antiproliferative Properties, Journal of Medicinal Chemistry, 2020, 63, 827-846	6.4	37

Gyanendra Kumar

#	Article	IF	CITATIONS
19	Recent Advances in Computer-Aided Drug Design as Applied to Anti-Influenza Drug Discovery. Current Topics in Medicinal Chemistry, 2014, 14, 1875-1889.	2.1	37
20	Synthesis and Evaluation of Substituted Pyrazoles: Potential Antimalarials Targeting the Enoylâ€ACP Reductase of Plasmodium Falciparum. Synthetic Communications, 2006, 36, 215-226.	2.1	28
21	Combined effect of epigallocatechin gallate and triclosan on enoyl-ACP reductase of Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 2008, 368, 12-17.	2.1	23
22	Peptide inhibitors of botulinum neurotoxin serotype A: design, inhibition, cocrystal structures, structure–activity relationship and pharmacophore modeling. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 511-520.	2.5	18
23	An Amino Acid in the Stalk Domain of N1 Neuraminidase Is Critical for Enzymatic Activity. Journal of Virology, 2017, 91, .	3.4	18
24	Discovery of a fluorene class of compounds as inhibitors of botulinum neurotoxin serotype E by virtual screening. Chemical Communications, 2012, 48, 2412.	4.1	17
25	SAR and pharmacophore models for the rhodanine inhibitors of <i>Plasmodium falciparum</i> enoylâ€acyl carrier protein reductase. IUBMB Life, 2010, 62, 204-213.	3.4	16
26	The identification, analysis and structure-based development of novel inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase. Bioorganic and Medicinal Chemistry, 2014, 22, 2157-2165.	3.0	14
27	Protein-Structure Assisted Optimization of 4,5-Dihydroxypyrimidine-6-Carboxamide Inhibitors of Influenza Virus Endonuclease. Scientific Reports, 2017, 7, 17139.	3.3	14
28	Biopanning of endotoxin-specific phage displayed peptides. Biochemical and Biophysical Research Communications, 2003, 307, 133-138.	2.1	13
29	Structural insights into the substrate specificity of the endonuclease activity of the influenza virus cap-snatching mechanism. Nucleic Acids Research, 2021, 49, 1609-1618.	14.5	13
30	Small molecule non-peptide inhibitors of botulinum neurotoxin serotype E: Structure–activity relationship and a pharmacophore model. Bioorganic and Medicinal Chemistry, 2016, 24, 3978-3985.	3.0	9
31	Challenges in Developing Biotoxin Inhibitors. Toxinology, 2015, , 357-373.	0.2	2

32 Challenges in Developing Inhibitors Against Toxins. , 2014, , 1-16.

0