

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1241118/publications.pdf Version: 2024-02-01

<u>۲۵۵٬۲ ۸٬۳</u>

#	Article	IF	CITATIONS
1	Heavy rainfall in peak growing season had larger effects on soil nitrogen flux and pool than in the late season in a semiarid grassland. Agriculture, Ecosystems and Environment, 2022, 326, 107785.	2.5	4
2	Contrasting phenology responses to climate warming across the northern extra-tropics. Fundamental Research, 2022, 2, 708-715.	1.6	6
3	Drought timing influences the sensitivity of a semiarid grassland to drought. Geoderma, 2022, 412, 115714.	2.3	13
4	Joint control by soil moisture, functional genes and substrates on response of N2O flux to climate extremes in a semiarid grassland. Agricultural and Forest Meteorology, 2022, 316, 108854.	1.9	5
5	Wood decay fungi: an analysis of worldwide research. Journal of Soils and Sediments, 2022, 22, 1688-1702.	1.5	20
6	Characteristics and trends of grassland degradation research. Journal of Soils and Sediments, 2022, 22, 1901-1912.	1.5	16
7	Drought and heat wave impacts on grassland carbon cycling across hierarchical levels. Plant, Cell and Environment, 2021, 44, 2402-2413.	2.8	22
8	Effect of partial root-zone drying irrigation (PRDI) on the biomass, water productivity and carbon, nitrogen and phosphorus allocations in different organs of alfalfa. Agricultural Water Management, 2021, 243, 106525.	2.4	15
9	The Global-DEP conceptual framework — research on dryland ecosystems to promote sustainability. Current Opinion in Environmental Sustainability, 2021, 48, 17-28.	3.1	52
10	The composition of antibiotic resistance genes is not affected by grazing but is determined by microorganisms in grassland soils. Science of the Total Environment, 2021, 761, 143205.	3.9	19
11	Warming and grazing interact to affect root dynamics in an alpine meadow. Plant and Soil, 2021, 459, 109-124.	1.8	5
12	Large-Scale Analysis of the Spatiotemporal Changes of Net Ecosystem Production in Hindu Kush Himalayan Region. Remote Sensing, 2021, 13, 1180.	1.8	12
13	Quantitative Analysis of the Research Trends and Areas in Grassland Remote Sensing: A Scientometrics Analysis of Web of Science from 1980 to 2020. Remote Sensing, 2021, 13, 1279.	1.8	34
14	Nonlinear carbon cycling responses to precipitation variability in a semiarid grassland. Science of the Total Environment, 2021, 781, 147062.	3.9	9
15	Downward aeration promotes static composting by affecting mineralization and humification. Bioresource Technology, 2021, 338, 125592.	4.8	18
16	Soil phosphorus availability affects diazotroph communities during vegetation succession in lowland subtropical forests. Applied Soil Ecology, 2021, 166, 104009.	2.1	11
17	Responses of soil extracellular enzyme activities and bacterial community composition to seasonal stages of drought in a semiarid grassland. Geoderma, 2021, 401, 115327.	2.3	19
18	Spatial patterns of microbial nitrogen-cycling gene abundances along a precipitation gradient in various temperate grasslands at a regional scale. Geoderma, 2021, 404, 115236.	2.3	16

É≜Å<‡ Å´"

#	Article	IF	CITATIONS
19	In-situ 13CO2 labeling to trace carbon fluxes in plant-soil-microorganism systems: Review and methodological guideline. Rhizosphere, 2021, 20, 100441.	1.4	8
20	Phylogenetic Correlation and Symbiotic Network Explain the Interdependence Between Plants and Arbuscular Mycorrhizal Fungi in a Tibetan Alpine Meadow. Frontiers in Plant Science, 2021, 12, 804861.	1.7	4
21	Responses of ammoniaâ€oxidizing archaea and bacteria to nitrogen and phosphorus amendments in an alpine steppe. European Journal of Soil Science, 2020, 71, 940-954.	1.8	14
22	Terrestrial N ₂ O emissions and related functional genes under climate change: A global metaâ€analysis. Global Change Biology, 2020, 26, 931-943.	4.2	125
23	In situ methods of plant-microbial interactions for nitrogen in rhizosphere. Rhizosphere, 2020, 13, 100186.	1.4	23
24	Grazing promoted soil microbial functional genes for regulating C and N cycling in alpine meadow of the Qinghai-Tibetan Plateau. Agriculture, Ecosystems and Environment, 2020, 303, 107111.	2.5	21
25	Ecology and sustainability of the Inner Mongolian Grassland: Looking back and moving forward. Landscape Ecology, 2020, 35, 2413-2432.	1.9	44
26	Increased litter input significantly changed the total and active microbial communities in degraded grassland soils. Journal of Soils and Sediments, 2020, 20, 2804-2816.	1.5	23
27	Responses of soil microbes and their interactions with plant community after nitrogen and phosphorus addition in a Tibetan alpine steppe. Journal of Soils and Sediments, 2020, 20, 2236-2247.	1.5	16
28	Ecological consequence of nomad settlement policy in the pasture area of Qinghai-Tibetan Plateau: From plant and soil perspectives. Journal of Environmental Management, 2020, 260, 110114.	3.8	21
29	Climatic, Edaphic and Biotic Controls over Soil δ13C and δ15N in Temperate Grasslands. Forests, 2020, 11, 433.	0.9	8
30	Climate-induced abrupt shifts in structural states trigger delayed transitions in functional states. Ecological Indicators, 2020, 115, 106468.	2.6	1
31	The intra- and inter-annual responses of soil respiration to climate extremes in a semiarid grassland. Geoderma, 2020, 378, 114629.	2.3	20
32	Decreased soil substrate availability with incubation time weakens the response of microbial respiration to high temperature in an alpine meadow on the Tibetan Plateau. Journal of Soils and Sediments, 2019, 19, 255-262.	1.5	5
33	Degraded patch formation significantly changed microbial community composition in alpine meadow soils. Soil and Tillage Research, 2019, 195, 104426.	2.6	94
34	Bioconversion of coal to methane by microbial communities from soil and from an opencast mine in the Xilingol grassland of northeast China. Biotechnology for Biofuels, 2019, 12, 236.	6.2	33
35	Total and active soil fungal community profiles were significantly altered by six years of warming but not by grazing. Soil Biology and Biochemistry, 2019, 139, 107611.	4.2	59
36	Phosphorus mediates soil prokaryote distribution pattern along a small-scale elevation gradient in Noijin Kangsang Peak, Tibetan Plateau. FEMS Microbiology Ecology, 2019, 95, .	1.3	17

É[≙]Å<‡ Å´"

#	Article	IF	CITATIONS
37	Three Tibetan grassland plant species tend to partition niches with limited plasticity in nitrogen use. Plant and Soil, 2019, 441, 601-611.	1.8	16
38	Quantitative Assessment of the Impact of Physical and Anthropogenic Factors on Vegetation Spatial-Temporal Variation in Northern Tibet. Remote Sensing, 2019, 11, 1183.	1.8	40
39	Do different livestock dwellings on single grassland share similar faecal microbial communities?. Applied Microbiology and Biotechnology, 2019, 103, 5023-5037.	1.7	4
40	Extreme-duration drought impacts on soil CO2 efflux are regulated by plant species composition. Plant and Soil, 2019, 439, 357-372.	1.8	15
41	Trait complementarity between fine roots of Stipa purpurea and their associated arbuscular mycorrhizal fungi along a precipitation gradient in Tibetan alpine steppe. Journal of Mountain Science, 2019, 16, 542-547.	0.8	13
42	Upland Soil Cluster Gamma dominates methanotrophic communities in upland grassland soils. Science of the Total Environment, 2019, 670, 826-836.	3.9	32
43	Response of soil bacterial communities to moisture and grazing in the Tibetan alpine steppes on a small spatial scale. Geomicrobiology Journal, 2019, 36, 559-569.	1.0	6
44	Ecological responses to heavy rainfall depend on seasonal timing and multiâ€year recurrence. New Phytologist, 2019, 223, 647-660.	3.5	41
45	Habitat filtering shapes the differential structure of microbial communities in the Xilingol grassland. Scientific Reports, 2019, 9, 19326.	1.6	14
46	Changes in soil microbial community response to precipitation events in a semi-arid steppe of the Xilin River Basin, China. Journal of Arid Land, 2019, 11, 97-110.	0.9	12
47	Assessing soil extracellular DNA decomposition dynamics through plasmid amendment coupled with real-time PCR. Journal of Soils and Sediments, 2019, 19, 91-96.	1.5	10
48	Soil microbial communities in alpine grasslands on the Tibet Plateau and their influencing factors. Chinese Science Bulletin, 2019, 64, 2915-2927.	0.4	13
49	Litter amendment rather than phosphorus can dramatically change inorganic nitrogen pools in a degraded grassland soil by affecting nitrogen-cycling microbes. Soil Biology and Biochemistry, 2018, 120, 145-152.	4.2	108
50	Long-term warming rather than grazing significantly changed total and active soil procaryotic community structures. Geoderma, 2018, 316, 1-10.	2.3	55
51	Total arsenic concentrations in Chinese children's urine by different geographic locations, ages, and genders. Environmental Geochemistry and Health, 2018, 40, 1027-1036.	1.8	11
52	Using the DNDC model to simulate the potential of carbon budget in the meadow and desert steppes in Inner Mongolia, China. Journal of Soils and Sediments, 2018, 18, 63-75.	1.5	9
53	Precipitation drives the biogeographic distribution of soil fungal community in Inner Mongolian temperate grasslands. Journal of Soils and Sediments, 2018, 18, 222-228.	1.5	29
54	Autotrophic and symbiotic diazotrophs dominate nitrogen-fixing communities in Tibetan grassland soils. Science of the Total Environment, 2018, 639, 997-1006.	3.9	88

É[≜]Å<‡ Å´"

#	Article	IF	CITATIONS
55	Seasonal timing regulates extreme drought impacts on CO2 and H2O exchanges over semiarid steppes in Inner Mongolia, China. Agriculture, Ecosystems and Environment, 2018, 266, 153-166.	2.5	20
56	Long-term grazing effects on vegetation characteristics and soil properties in a semiarid grassland, northern China. Environmental Monitoring and Assessment, 2017, 189, 216.	1.3	49
57	A growing season climatic index to simulate gross primary productivity and carbon budget in a Tibetan alpine meadow. Ecological Indicators, 2017, 81, 285-294.	2.6	10
58	Aboveground net primary productivity and carbon balance remain stable under extreme precipitation events in a semiarid steppe ecosystem. Agricultural and Forest Meteorology, 2017, 240-241, 1-9.	1.9	42
59	Reference levels and relationships of nine elements in first-spot morning urine and 24-h urine from 210 Chinese children. International Journal of Hygiene and Environmental Health, 2017, 220, 227-234.	2.1	23
60	Increase in ammonia-oxidizing microbe abundance during degradation of alpine meadows may lead to greater soil nitrogen loss. Biogeochemistry, 2017, 136, 341-352.	1.7	44
61	Estimates of Soil Ingestion in a Population of Chinese Children. Environmental Health Perspectives, 2017, 125, 077002.	2.8	48
62	Variability and Changes in Climate, Phenology, and Gross Primary Production of an Alpine Wetland Ecosystem. Remote Sensing, 2016, 8, 391.	1.8	51
63	Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall. Scientific Reports, 2016, 6, 20985.	1.6	38
64	Assessing soil microbial respiration capacity using rDNA- or rRNA-based indices: a review. Journal of Soils and Sediments, 2016, 16, 2698-2708.	1.5	16
65	Responses of greenhouse gas fluxes to climate extremes in a semiarid grassland. Atmospheric Environment, 2016, 142, 32-42.	1.9	49
66	Identification of active aerobic methanotrophs in plateau wetlands using DNA stable isotope probing. FEMS Microbiology Letters, 2016, 363, fnw168.	0.7	22
67	Precipitation shapes communities of arbuscular mycorrhizal fungi in Tibetan alpine steppe. Scientific Reports, 2016, 6, 23488.	1.6	62
68	Changes in Biomass and Quality of Alpine Steppe in Response to N & P Fertilization in the Tibetan Plateau. PLoS ONE, 2016, 11, e0156146.	1.1	14
69	Warming decreased and grazing increased plant uptake of amino acids in an alpine meadow. Ecology and Evolution, 2015, 5, 3995-4005.	0.8	15
70	Effect of irrigation regimes and phosphorus rates on water and phosphorus use efficiencies in potato. Scientia Horticulturae, 2015, 190, 64-69.	1.7	35
71	16S rRNA-based bacterial community structure is a sensitive indicator of soil respiration activity. Journal of Soils and Sediments, 2015, 15, 1987-1990.	1.5	16
72	Earlier-Season Vegetation Has Greater Temperature Sensitivity of Spring Phenology in Northern Hemisphere. PLoS ONE, 2014, 9, e88178.	1.1	98

É[≜]Å<‡ Å´"

#	Article	IF	CITATIONS
73	Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology, 2014, 95, 3387-3398.	1.5	67
74	Predicted No-Effect Concentration and Risk Assessment for 17-[Beta]-Estradiol in Waters of China. Reviews of Environmental Contamination and Toxicology, 2014, 228, 31-56.	0.7	13
75	Microbial Diversity in Hummock and Hollow Soils of Three Wetlands on the Qinghai-Tibetan Plateau Revealed by 16S rRNA Pyrosequencing. PLoS ONE, 2014, 9, e103115.	1.1	54
76	Modeling Carbon Fluxes Using Multi-Temporal MODIS Imagery and CO2 Eddy Flux Tower Data in Zoige Alpine Wetland, South-West China. Wetlands, 2014, 34, 603-618.	0.7	30
77	Responses of soil respiration and its components to drought stress. Journal of Soils and Sediments, 2014, 14, 99-109.	1.5	69
78	Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes. Journal of Plant Physiology, 2014, 171, 1248-1255.	1.6	73
79	Effects of warming on root diameter, distribution, and longevity in an alpine meadow. Plant Ecology, 2014, 215, 1057-1066.	0.7	13
80	Aerobic methanotroph diversity in <scp>R</scp> iganqiao peatlands on the <scp>Q</scp> inghai– <scp>T</scp> ibetan <scp>P</scp> lateau. Environmental Microbiology Reports, 2013, 5, 566-574.	1.0	55
81	Root size and soil environments determine root lifespan: evidence from an alpine meadow on the Tibetan Plateau. Ecological Research, 2013, 28, 493-501.	0.7	21
82	Effects of grazing on CO2 balance in a semiarid steppe: field observations and modeling. Journal of Soils and Sediments, 2013, 13, 1012-1023.	1.5	19
83	ls frequency or amount of precipitation more important in controlling CO2 fluxes in the 30-year-old fenced and the moderately grazed temperate steppe?. Agriculture, Ecosystems and Environment, 2013, 171, 63-71.	2.5	37
84	Effects of warming and increased precipitation on soil carbon mineralization in an Inner Mongolian grassland after 6Ayears of treatments. Biology and Fertility of Soils, 2012, 48, 859-866.	2.3	24
85	Verification of a threshold concept of ecologically effective precipitation pulse: From plant individuals to ecosystem. Ecological Informatics, 2012, 12, 23-30.	2.3	23
86	Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 2012, 93, 2365-2376.	1.5	305
87	Comparative study of estrogenic effects of estradiol,nonylphenol, polychlorinated biphenyls,cadmium,zinc and its mixtures on <1>Tanichthys albonubes 1 . Journal of Fisheries of China, 2012, 35, 838-845.	0.1	2
88	The fluxes of CO2 from grazed and fenced temperate steppe during two drought years on the Inner Mongolia Plateau, China. Science of the Total Environment, 2011, 410-411, 182-190.	3.9	33
89	Comprehensive assessments of root biomass and production in a Kobresia humilis meadow on the Qinghai-Tibetan Plateau. Plant and Soil, 2011, 338, 497-510.	1.8	43
90	Predominance of Precipitation and Temperature Controls on Ecosystem CO2 Exchange in Zoige Alpine Wetlands of Southwest China. Wetlands, 2011, 31, 413-422.	0.7	59

É[≙]Å<‡ Å´"

#	Article	IF	CITATIONS
91	Modeling impacts of climate change on carbon dynamics in a steppe ecosystem in Inner Mongolia, China. Journal of Soils and Sediments, 2011, 11, 562-576.	1.5	34
92	Partitioning pattern of carbon flux in a <i>Kobresia</i> grassland on the Qinghaiâ€Tibetan Plateau revealed by field ¹³ C pulseâ€labeling. Global Change Biology, 2010, 16, 2322-2333.	4.2	75
93	The response of ecosystem CO2 exchange to small precipitation pulses over a temperate steppe. Plant Ecology, 2010, 209, 335-347.	0.7	41
94	UV light spectral response of photosynthetic photochemical efficiency in alpine mosses. Journal of Plant Ecology, 2010, 3, 17-24.	1.2	7
95	The sensitivity of temperate steppe CO2 exchange to the quantity and timing of natural interannual rainfall. Ecological Informatics, 2010, 5, 222-228.	2.3	34
96	Radiation partitioning and its relation to environmental factors above a meadow ecosystem on the Qinghaiâ€īibetan Plateau. Journal of Geophysical Research, 2010, 115, .	3.3	22
97	The response of ecosystem CO2 exchange to small precipitation pulses over a temperate steppe. , 2010, , 155-167.		0
98	Photosynthetic response to dynamic changes of light and air humidity in two moss species from the Tibetan Plateau. Ecological Research, 2009, 24, 645-653.	0.7	18
99	Foreign aid, domestic capital accumulation, and foreign borrowing. Journal of Macroeconomics, 2008, 30, 1269-1284.	0.7	9
100	Characterizing evapotranspiration over a meadow ecosystem on the Qinghaiâ€Tibetan Plateau. Journal of Geophysical Research, 2008, 113, .	3.3	77
101	CO2, H2O and energy exchange of an Inner Mongolia steppe ecosystem during a dry and wet year. Acta Oecologica, 2008, 33, 133-143.	0.5	51
102	Diurnal and seasonal variations of UV radiation on the northern edge of the Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 2008, 148, 144-151.	1.9	29
103	Marshallian time preferences and monetary non-neutrality. Economic Modelling, 2008, 25, 1196-1205.	1.8	2
104	Seasonal and interannual variation in water vapor and energy exchange over a typical steppe in Inner Mongolia, China. Agricultural and Forest Meteorology, 2007, 146, 57-69.	1.9	83
105	Seasonal variation in carbon exchange and its ecological analysis over Leymus chinensis steppe in Inner Mongolia. Science in China Series D: Earth Sciences, 2006, 49, 186-195.	0.9	12
106	Response of chlorophyll fluorescence to dynamic light in three alpine species differing in plant architecture. Environmental and Experimental Botany, 2006, 58, 149-157.	2.0	10
107	Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia. Ecological Research, 2005, 20, 519-527.	0.7	113
108	Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai–Tibetan Plateau. Agricultural and Forest Meteorology, 2005, 129, 175-185.	1.9	124

É[≙]Å<‡ Å´"

#	ARTICLE	IF	CITATIONS
109	Leaf Orientation, Incident Sunlight, and Photosynthesis in the Alpine Species Suassurea superba and Gentiana straminea on the Qinghai-Tibet Plateau. Arctic, Antarctic, and Alpine Research, 2004, 36, 219-228.	0.4	9
110	Seasonal patterns of gross primary production and ecosystem respiration in an alpine meadow ecosystem on the Qinghai-Tibetan Plateau. Journal of Geophysical Research, 2004, 109, .	3.3	52
111	Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai–Tibetan Plateau, China. Agricultural and Forest Meteorology, 2004, 124, 121-134.	1.9	165
112	Photosynthetic depression in relation to plant architecture in two alpine herbaceous species. Environmental and Experimental Botany, 2003, 50, 125-135.	2.0	24
113	Short-term variation of CO2flux in relation to environmental controls in an alpine meadow on the Qinghai-Tibetan Plateau. Journal of Geophysical Research, 2003, 108, .	3.3	54
114	Grasslands Maintain Stability in Productivity Through Compensatory Effects and Dominant Species Stability Under Extreme Precipitation Patterns. Ecosystems, 0, , 1.	1.6	2